International Journal of Engineering Research And Management (IJERM)
ISSN : 2349- 2058, Volume-01, Issue-05, August 2014

Design of High Speed Excess-3 Adder Using LUT

Mallireddy Sai Deepika, M. Naresh Babu

Abstract— Processing of decimal numbers using
binary system tends to be costly in terms of area and
speed. To realize decimal operations efficiently an
improved approach to implement decimal additions
is proposed which is based on 6-input LUTSs and fast
carry chains. A new architecture is proposed with
emphasis on critical path delay reduction. The
adder architecture is implemented on Xilinx
Virtex-6 FPGA for operand sizes from 2 to 18 digits.
the design has outperformed other approaches in
terms of area and delay. On average, the delay
reduction is 13.1% and LUT saving is 28.9%
compared to a conventional BCD adder. excess-3
addition is implemented using this system.

Index Terms— BCD Adders, critical path delay
reduction, fast carry chain, 6-input LUT, xilinx virtex-6
FPGA.

L. INTRODUCTION
Decimal computations are required in various
applications, such as internet, industrial control,

financial and commercial systems. Recently there is an
increasing demand for efficient hardware realizations
required in these applications. This has also led to the
specification revision of the IEEE-754-2008 standard
for floating-point arithmetic to incorporate the decimal
format [1-2].

As in any hardware realization of real time systems,
there is always a requirement to achieve high
performance at a low cost. However, decimal
arithmetic architectures and the hardware realizations,
particularly, in Field Programmable Gate Arrays
(FPGAs) have not been fully tackled in the literature.
Therefore, efficient methods for the implementation of
decimal operations are receiving more attention from
hardware designers.

In decimal computation, the most common operation is
addition. Earlier decimal adders were designed at the

Manuscript received Aug 18, 2014
M. Sai Deepika, P.G.Student scholar M.Tech (VLSI)

ECE Department Sree vidyanikethan engineering college
(Autonomous)

M. Naresh Babu, Assistant Professor in
Vidyanikethan Engineering College, Tirupathi, India

Sree

89

gate level targeting ASICs [3-6].
Binary-Coded-Decimal (BCD) number representation
was used in these designs. Some schemes utilized in
binary adders were also employed in these BCD
additions. In [3], a reduced delay BCD adder was
proposed. This approach improved the delay of BCD
addition by increasing parallelism. Two 4-bit binary
adders, a carry circuit, one AND gate, and one OR gate
were used in the critical-path of the adder. In [5],a BCD
adder was realized using reversible logic gates. Carry
Look-Ahead scheme was employed to speed up the
performance. The author in [6] proposed a
multi-operand parallel decimal adder, which involved
binary to decimal conversion in order to obtain BCD
result. The conversion allows for an easy alignment of
the sums of adjacent columns.

With the advancement in FPGA technology, the
efficiency of the architecture, and availability of
various hardware resources, decimal arithmetic can be
implemented with high degree of efficiency. In [7]
decimal adders/subtractors were proposed based on the
use of Look Up Tables (LUTs) in FPGAs. In [8] a
multi-operand decimal adder trees were presented and
optimized based on the 6-input LUTs with the fast carry
chains. Carry-ripple BCD adders were used in the adder
tree, which led to an increase in the critical path delay.
In this paper, an improved carry-ripple BCD adder is
presented targeting critical path delay reduction. When
implemented into Xilinx’ Virtex-6 FPGA, we achieved
both speed improvement and area reduction.

The organization of this paper is as follows. Section 2
introduces some existing decimal adders that were used
in this paper for comparison purpose. The improved
BCD adder approach is presented in Section 3. In
Section 4, the implementations and comparison of
results are described, and the conclusions are given in
the last section.

II. RELATED BCD ADDITIONS

A. Conventional BCD Adder

In a conventional 1-digit BCD adder, two BCD
operands are added as binary numbers using a binary
adder, and then the binary result is converted to BCD
number. To perform the binary to BCD conversion,
correction logic and another binary adder are required.
Fig. 1 is the block diagram of the conventional 1-digit
BCD adder.

www.ijerm.com

Design of High Speed Excess-3 Adder Using LUT

o= e L Y] B2 EZBEL B0

A

Apic adder o e

oun
Carrscmon
I

52 = =51 50

i |

=3 SF =1 =0
L T

BOCDF Sum

Fig 1. Conventional 1-digit BCD adder.

The correction logic function in Fig. 1 is expressed as:

Cout = X =84 + S35, 4555,

The sum of the first binary adder is added to (0110)2
when the sum is greater than ‘9’ to generate the correct
BCD result.

B. Double-Dibble BCD Adder

The Double-Dabble (DD) BCD adder uses the
Double-Dabble Binary to BCD Conversion
algorithm[9] to convert the binary sum to BCD number.
This algorithm shifts the binary result one bit left at
once, and then compares with ‘4’. If the value of the
shifted bits is great than ‘4’, ‘3* is added to the shifted
bits; otherwise, continue to shift one bit left. Suppose
the shifted bits are called “Shifted Unit” (SU), the
algorithm is presented as:

if (SU>4) then
SU=SU+3;
else shift left;

It is clear that this algorithm is not efficient for the
conversion of large size binary numbers because the
number of corrections is based on the number of binary
bits. However, for a 1-digit adder operation, we have
simplified the design as shown in Fig. 2, where the
block C performs the function of adding-3 correction.
Originally, by using a binary adder, the sum of two
BCD operands is a 5-bit binary number. To convert this
5-bit binary result to a BCD number, two adding-3
correction blocks are required, as shown in Fig. 2 (b)
[9]. However, since the maximum number of the binary
result to be corrected is

=A+B+Cin
=19
=(10011)2

R= [r4r3r2r1 I'()]

then the maximum value of these first three shifted bits,
[r4r3r2] is not greater than 4. Thus, the top adding-3
correction block in Fig. 2 (b) is not necessary. Then,
continue to shift left 1-bit into the “Shifted Unit”,
which means shifting r1 into SU. Hence the four bits,

92

[r4r3r2r1] are used to compare with 4. This will lead to
an improved DD conversion architecture, which
requires only one adding-3 correction block, as shown
in Fig. 2 (¢). The function of the adding-3 correction
block, named as C, is captured in Table 1.

0.9 0.8 i
ar Mo
Binary sdder ﬂ | \
~Js [1] —
mrmnmai Col ey o Cout gt o)
Cout 5
(2)DD BCD (b)Original (c)Simplified
adder correction correction
Fig 2. DD I-digit BCD adder.
N T4 T3 1 I Cout S3 Sz Sl Note
0 0000 0 000
1 0001 0 001
2 0010 0 010
3 0011 0 011
4 0100 0 1 00
5 0101 1 0 0 0| add-3
6 0110 1 0 0 1| add-3
7 0111 1 0 1 0| add-3
8 1000 1 01 1| add-3
9 1001 1 1 0 0| add-3
10 1010 X X X X
15 1111 X X X X

Table I . Truth table of the correction block

According to the Truth Table, the outputs of the
adding-3 correction are expressed as:

Cout = I3 4131

S; =141y 4130 I

S, = 14713 Ty 1oT

S = r4ry Hr4 13113051,

C. 6-LUT-based carry-ripple BCD adder

In newer products of FPGAs, 6-input LUTs are
available to be used and combined with fast carry chain.
Fig. 3 shows this structure used to implement 1-bit
binary adder. By cascading this 1-bit binary adder, an
n-bit carry-ripple binary adder can be realized.

Q1)

K]]
3

A D=

[t 1]

Fig 3. Architecture of FPGA for 1-bit binary adder.

www.ijerm.com

International Journal of Engineering Research And Management (IJERM)
ISSN : 2349- 2058, Volume-01, Issue-05, August 2014

Based on this configuration, a BCD carry-ripple adder
has been proposed in [8]. The carry-ripple BCD adder
uses the 6-input LUTSs to add the most 3 significant bits
ofthe input operands, and correct the result by adding-3
to the sum of the 3-bit addition. In this method, the
correction is performed when the sum is equal to or
greater than 4. Then, the fast carry chain and XOR gates
are used to compute the two least significant bits and
the carries. The structure is shown in Fig. 4. Since in
this case the sum of the BCD adder, (1000)2 or (1001)2,
has been added to (0110)2, the method allowed the
4-bit combinations, (1110)2 and (1111)2, to be valid
representations of decimal values ‘8 and ‘9°,
respectively. To correct the final result, a post
correction has to be performed.

Thus, the final output of the BCD adder is expressed as:

S:Z3X8+ZZZ;X4+Z]Z;X2+ZO

In this approach, the critical path delay is propagated
from Cin to Cout, which is equivalent to 4 multiplexer
delays.

Az
BiZL

Fig 4. BCD 1-digit adder.

III. PROPOSED BCD ADDER
The proposed BCD adder is also based on 6-input LUTs
and the fast carry chains in FPGAs. Assume the input
operands of the adder are A and B in BCD format. To
use the 6-input LUTs, each of the two input operands is
decomposed into two parts:

A =[azayaa0]=(azaza;)*2+ag
=A,x2+a,
B =[b3b,b;bg]=(bsbsb;)*2+by
=B;x2+ b,
The output of the BCD adder, named as (Coy S3S,S:S0),
is presented as:

[COUtS3Sleso] =A+B+C,
=[A1x2+ag[+[B1*2+bo]+Ciy
:[(agazal)+(b3b2b|)]X2+[ao+b0+cm]

In (4), the expression in the first part represents a 3-bit
adder, and the expression in the second part is a full
adder. Since the input operands in (4) are BCD
numbers, the maximum value of the operands, (a3a2al)
or (b3b2bl) is (100)2. To achieve a BCD output, an
adding-3 correction is performed based on the sum of

91

(A1+B1) and the carry of the full adder, named as C1.
Thus, the output of the BCD adder is expressed as:

[CouS3S58:S0] =(A+B+6)ifA,+B,>5and
C]: [

=A+B+6 if A;+B;=4 and C,=1
—A+B ifA;+B,=4 and C,;=0
=A+B #A]+B]<4 and C]:¢

where adding-6 to (A+B) is the same as adding-3 to
(A1+B1). According to (5), two scenarios can be
considered separately. One is to design the 3-bit adder
with the adding-3 correction without taking into
consideration of the carry of the full adder; and the
other one is to add the carry of the full adder for the
final result of the BCD adder.

First, let’s consider the 3-bit adder, (A1+B1). If the
sum of (A1+B1) is equal to or greater than 5 while the
carry of the full adder is ‘1’ or ‘0’, the final result of the
BCD adder is equal to or greater than
(101)2x2=5%x2=10, and the adding-3 correction is
required to be performed to the sum of
(A1+B1).Otherwise, we do not perform the adding-3
correction to the 3-bit adder in this case. This 3-bit
adder and the correction are merged together as a
6-input function, and implemented using a 6-input
LUT. Fig. 5 illustrates this architecture, and Table 2 is
the Truth Table of the 3-bit adder with the adding-3
function.

a(@1) b(3:1) a0 b

F4 Fa3F2F1 FO
Fig 5. 3-bit adder with the adding-3 correction using 6-input
LUTs.
(33 az al) + (b3 b2 F4 F3 F2 F1 Note
b))
000 0000 00O00O0
000 0010 O0O0T1
000 010,0 010
000 0110 011
000 1 000 1 00
001 000, 0 0O0TI
001 001,0 010
100 00 0 1 00 add-3
1 00 0 1|1 00 add-3
1 00 01 1 0 01 add-3

www.ijerm.com

Design of High Speed Excess-3 Adder Using LUT

add-3

—_—
S O
o o
— O
o o
—_—
— O

O -
O =
—_

Table II. Truth table of 3-bit adder with the adding-3
corrections.

Now, let’s take the C1 into account. If C1=0, there is no
change to the result of the 3-bit adder. However, if
C1=1, the carry has to be added to the sum of the 3-bit
adder. This addition is realized by an exclusive OR gate
and one multiplexer at each of the outputs of the 3-bit
adder. Moreover, if C1=1 and the sum of (A1+B1) is
F4F3F2F1=(0100)2=4, the result of the BCD adder
should be equal to:

[CousS38:8180] = (F4F5FF+C) X 2+F,
Z(0100+1)x2+F,
~(101 Fy),
:(1 000 Fog)gcp

In this case, the carry of the BCD adder, Cout is the
same as the carry of the full adder C1=1 and the sum of
the BCD adder has to be forced to 0 at the bit positions
of S3 and S1.

Considering all the scenarios mentioned above, the
final carry of the BCD adder is equal to F4 when
(A1+B1)>5 (in this case F3=0 after adding-3
correction), and equal to C1 when (A1+B1)<4 (in this
case F3=1). Thus, one multiplexer can be used to
generate the final carry of the BCD adder. Fig. 6 shows
the completed design for the improved BCD adder. The
most left-side multiplexer is used to select either the
carry of the 3-bit adder F4 for (A1+B1)>5 and
(A1+B1)<4, or the carry of the full adder C1 for
(A1+B1)=4. To force the sum of the BCD adder under
the condition of (A1+B1) = (F3F2F1) = (100)2
with C1=1, one AND gate with l-input inverted is
connected in the bit positions of S3 or S1.

The improvement of our architecture shown in Fig. 6
over the one proposed in [8] shown in Fig.4 is that our
proposed approach has bypassed two multiplexer
delays in the critical path of the BCD adder, hence
reduced the carry-propagation delay. This has
significant impact on the performance of large size
BCD adders and multipliers.

(3
e : i | i | i Af0) B(O)

| &LUT | | &LUT | | &5LUT | | &LUT |

Cout

Fig 6. Improved BCD 1-digit adder.

92

IV. SIMULATION RESULTS

Ons 100ns

00ns 300ns 400ng

0

0 ng 00 ns T00n

Comparision Table:

Fig 10: Improved BCD 1-digit Adder

Types of | Conventiona | Double-Dibbl | BCD Improved
BCD I BCD adder | e BCD adder 1-digit 1-digit
adders adder BCD

adder
Number 12 12 12 10
of LUTs
Delay(ns) | 11.315ns 10.227ns 10.183n 9.179ns

s

www.ijerm.com

International Journal of Engineering Research And Management (IJERM)
ISSN : 2349- 2058, Volume-01, Issue-05, August 2014

Ex-3 addition using BCD adders:

Examplel:
m using excess-3
addition
4-0100 4+3=7 0111
3-0011 3+3=6__ 0110
_0111 __1101
7 13
Example 2 :
using excess-3
m addition
7-0111 7+3=10 1010
6-0110 6+3=9 1001
1101 —1 0011
- add 6> 0110
13 1 1001
1 9

Fig 11: Simulation result using Excess-3 addition.

Comparision Table:

Adder Conventiona | Double-Dibbl | Improved
Types I BCD adder | e BCD adder 1-digit
using ex-3 using ex-3 BCD
addition addition adder
using
ex-3
addition
No.of 22 22 19
LUT's
Delay(ns | 13.315ns 12.195ns 11.768ns
)
CONCLUSIONS

This paper presented an improved BCD adder based on
newer Xilinx FPGA architectures. The proposed BCD
adder approach efficiently mapped the decimal addition
function onto the 6-input LUTs and the fast carry
chains in FPGAs. The critical path of the adder has
been minimized by bypassing two multiplexers from

93

incoming carry to outgoing carry in the 1-digit BCD
adder. The implementation of the proposed approach
has resulted in improvements in terms of delay
reduction and savings in the number of LUTs. An
excess-3 addition is implemented using LUT's which
resulted in savings in number of LUT's and delay
reduction.

REFERENCES

[1]01] IEEE Computer Society, “IEEE 754-2008
Standard for Floating-Point Arithmetic,”
Aug.2008.at:http://ieeexplore.ieee.org/stamp/stamp.
jsp?tp=&arnumber=4610935.

[2IM. F. Cowlishaw, “Decimal Floating —Point:
Algorism for Computers,” 16th IEEE Symposium on
Computer Arithmetic, June 2003, page(s): 104-111.

[3]A.A. Bayrakci and A. Akkas, “Reduced Delay BCD
Adder,” 1EEE International Conference on
Application-specific Systems, Architectures and
Processors (ASAP) 2007, page(s): 266-271.

[4]10. Al-Khaleel, Z. Al-Qudah, M. Al-Khaleel, C.A.
Papachristou and F.G. Wolff, “Fast and compact
binary-to-BCD conversion circuits for decimal
multiplication,” 2011 IEEE 29th International
Conference on Computer Design (ICCD), Oct.
2011, page(s): 226 —231.

[5]X. Susan Christina, M. Sangeetha Justine, K. Rekha,
U. Subha and R. Sumathi, “Realization of BCD
adder using Reversible Logic,” International Journal
of computer theory and engineering, Vol.2, No. 3,
June 2010, page(s): 333-337.

[6]L. Dadda, “Multi Operand Parallel Decimal Adders: a
mixed Binary and BCD Approach,” IEEE
Transactions on Computers, vol. 56, Oct. 2007,
page(s): 1320-1328.

[7IM. Vazquez, G. Sutter, G. Bioul, J.P. Deschamps,
“Decimal Adders/Subtractors in FPGA: Efficient
6-input LUT Implementations,” International
Conference on Reconfigurable Computing and
FPGAs (ReConFig'09), Dec. 2009, page(s): 42 —47.

[8]Alvaro Vazquezl and Florent de Dinechin,
“Multi-operand Decimal Adder Trees for FPGAs,”
Inria-00526327, vol. 1, at:
http://hal.inria.fr/inria-00526327.

[9]Binary-to-BCD Converter: “Double-Dabble
Binary-to-BCD Conversion Algorithm,” at:
http://edda.csie.dyu.edu.tw/course/fpga/Binary2BC
D.pdf.

[10]Xilinx Inc., “Virtex-6 User Guide,” UG364 (v1.2),
Feb. 2012, at:
http://www xilinx.com/support/documentation/user
_guides/ug364.pdf

www.ijerm.com

