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The Traveling Salesman Problem Using Minimum
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Abstract— The Traveling Salesman Problem (TSP) is a
widely mentioned classic case in data structure and
algorithm, which can be solved in many methods. The
idea was first aroused in a brochure, mentioned a
problem of a salesman travelling through Germany and
Swiss. At that time, the problem remained unclear and
came up with no mathematical methods. The task allows a
list of cities and their pair-wise distances, aiming to find
out a shortest route, which visited each city only once, in
order to save time and money. In this paper we are
planning to consider the solution of Minimum Spanning
Tree (MST) on a complete graph G = (V, E) with n=10
vertices. We have listed 10 different cities in China and
aimed to find out a best route for the customers based on
their inputs about which cities are the final and shortest
destinations. We shall consider the method for solving the
problem: first, using Minimum Spanning Tree in
Heuristic Searching Algorithm, to find the shortest path.
Mark the coordinates of each city and turn the statistics
into distances (kilometers). Add a group of input figures,
such as the number of cities visited and which is the
beginning location. Output the best route for the clients
eventually.

Index  Terms—Travelling  Salesman
Minimum Spanning Tree, Prim’s algorithm

Problem,

I. INTRODUCTION

The TSP problem is a combinatorial optimization problem.
This problem can be proved to have NP (nondeterministic
polynomial time) computational complexity. Therefore,
anything that make the problem’s solving method simplified,
are highly evaluated. Traveling salesman problem is one of
the most prominent problems in graph theory, that is, " given
n’ points of complete graph, each edge has a length, and the
total length of the shortest after each vertex is just a closed
loop”. Moreover the minimum cost spanning tree has been
applied different fields of application. In this paper, minimum
spanning tree has used to find the minimum distance for
travelling all cities from source to destination at most once. In
addition, minimum cost spanning tree has been widely
implements via two methods: prim’s algorithm and kruskal’s
algorithm. Thus, our objective is to find the shortest route
among source and destination we have used the combination
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of minimum spanning tree and prim’s algorithm for TSP
problem.

II. Related Literature
Traveling salesman problem, as a representative of the typical
NP problem, has been a hot topic in the theoretical research of
computer algorithm since introduced, and all kinds of
algorithms emerge in endlessly for this problem. It has always
been a focus in the study of the industry; its application range
is wide, with important guiding significance in many areas.
Objectively speaking, it does not exist an optimal algorithm
for TSP problem currently, each algorithm has its
deficiencies, for classical algorithm pursues the accuracy of
the answer and ignores the consumption of time and space,
while modern popular ones seek for approximate solution, but
are unacceptable on results to some extent. In the future, study
on this algorithm should grasp the three aspects: continue to
improve the existing algorithms, adopt the idea of artificial
intelligence, create new TSP algorithm. In addition, the
significance of TSP in optimization problems are greatly
acknowledged in literatures [11,12,13]. Moreover, number of
studies [5,6,7] has stated significance of minimum spanning
tree for giving estimated solution to the hard problem such as
TSP. In addition, the previous studies [9,10] have
implemented minimum spanning tree via prim’s algorithm.
Based on this context, to solve the TSP through minimum
spanning tree using prim’s algorithm has addressed in this

paper.

II1. Objectives and contribution of proposed work
"Traveling salesman problem" applications include: how to
plan the most reasonable and efficient road traffic, in order to
reduce congestion, how to plan commodity circulation better,
in order to reduce operating costs, how to set the node in the
Internet environment, in order to let the information flow
better.

1. To get an access to TSP problem and find out an
algorithm for the best routes between China’s cities.

2. Discuss the certain method (minimum spanning tree,
prim’s algorithm) we have used, combine the ideas
and experiences during the program about the
proposed methodologies.

3. Proposed approach finds shortest route from source to
designation as well as to get positional co-ordinates.

IV. Prim’s algorithm
In the area of computer and software engineering, Prim's
algorithm, which is widely used in graph theory aims to find
an MST for a connected weighted undirected graph. During
this process, an assemble of edges is found and forms a tree
that consist of each vertexes, the sum of cost of this tree
should be minimum. The prim’s algorithm is a greedy method
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which finds a MST for a connected weighted undirected
graph. It can finds the subset of edges and forms a tree that
includes every vertex, where the total weights of all the edges
in the tree is minimized.

In this algorithm, edges are added step by step, and
continuously fills the assemble’s size until all the vertices are
in this assemble.

Input: A non-empty connected weighted graph with several
vertexes V and edges E (the weights can be negative).
Initialize: V’ = {x}, x, which is the start point of the newly
initialized assemble V’, can be any node in V, E’ = {}
Repeat until V’ = V: Choose an edge {u, v} with minimal
weight so that u is in V” and v is not (pick any one among the
edges with same weight). Thus, v is transferred to V’, and {u,
v} transferred to E’

Output: An MST combined by assembles V’ and E’.
Psudocode:

MST-PRIM( G, w, r)
1 apointue V[ GJ

2 dokey[u] «— -
3 #fu] — NIL
4 key[r] —0
5 0<V/G]
6 while Q#®
7 dou<«— EXTRACT-MIN( Q)
8 foreachv € Adj[ u]
9 doifveQandw(u,
10 thenn[v] «—u

11

V)< key[v]
key[ v] —w(u, v)

This paper is planning to solve TSP along with MST and
Prim’s algorithm is used to compute the shortest path between
cities. The paper contributes the following steps to find an
optimum solution.

Step1: Select the map and compute the distance (kilometers)
among source and destination.

Step2: Choose to particular city to travel and find the shortest
route.

Step3: In a graph choose vertices which represent the cities.
Step4: By using MST find the minimum cost to travel from
source to destination and covers cities at most once.

Step5: The MST is implemented through prim’s algorithm.
Step6: The shortest path among the cities will find the
optimum result.

V. Implementation of TSP
The following data shows the indispensable figures that we
are going to use along the overall documents, such as the
cities and corresponding numbers, longitude and latitude of
each cities as shown in Table 1 and Table 2.

City[1]=Beijing City[2]=Shanghai
City[3]=Guangzhou City[4]=Tianjin
City[5]=Wuhan City[6]=Jinan
City[7]=Xian City[8]=Chongqing
City[9]=Nanchang City[10]=Chengdu

Table 1: China cities

Beijing(116.46, 39.92) Shanghai(121.48, 31.22)

Guangzhou(113.14, 23.08) Tianjin(117.20, 39.13)

Wuhan(114.17, 30.35) Jinan(117.00, 36.40)

Xian(108.57, 34.17) Chongqing(106.33, 29.35)

Nanchang(115.55, 28.40) Chengdu(104.04, 30.40)

Table 2: longitude and latitude of each city

Set up vertexes with these 10 cities. Based on that, calculate
the straight-line distances between any two cities (in degree),
than change the wunit to kilometers (Explain: 1
longitude=85.39km, 1 latitude=111km), distances is
calculated by MST and prim’s algorithm (difference of
longitude) and d-Lat (difference of latitude), with the formula
of the distance of two points, distances between cities are
listed as follow (unit: kilometers):

The distances between Beijing and other cities.

cites 2 3 4 5 6 7 8 9 10
1 1056.56 1890.62 108.08 1080.12 393.43 928.05 1457.67 1281.08 1497.13
The distances between Shanghai and other cities.
cites 1 3 4 5 6 7 8 9 10
2 1056.56 1150.45 951.04 631.63 690.61 1149.99 1310.21 595.30 1491.98
The distances between Guangzhou and other cities.

cites 1 2 4 5 6 7 8 9 10

3 1890.62 1150.45 1814.97 811.75 1514.81 1291.36 906.93 625.35 1124.27
The distances between Tianjin and other cities.

cites 1 2 3 5 6 7 8 9 10

4 108.08 951.04 1814.97 1008.34 303.51 919.87 1428.29 1199.33 1483.84
The distances between Wuhan and other cities.

| cites | 1 2 3 4 6 7 8 9 10
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|5 | 1080.12 631.63 811.75 1008.34 713.71 639.10 678.60 [ 24645 [ 865.02
The distances between Jinan and other cities.
cites 1 2 3 4 5 7 8 9 10
6 393.43 690.61 1514.81 303.51 713.71 761.21 1201.04 896.59 1291.60
The distances between Xian and other cities.
Cites 1 2 3 4 5 6 8 9 10
7 928.05 1149.99 1291.36 919.87 639.10 761.21 568.18 874.90 569.86
The distances between Chongqing and other cities.
Cites 1 2 3 4 5 6 7 9 10
8 1457.67 1310.21 906.93 1428.29 678.60 1201.04 568.18 | 794.33 227.64
The distances between Nanchang and other cities.
Cites 1 2 3 4 5 6 7 8 10
9 1281.08 595.30 625.35 1199.33 246.45 896.59 874.90 794.33 1007.60
The distances between Chengdu and other cities.
Cites 1 2 3 4 5 6 7 8 9
10 1497.13 1491.98 1124.27 1483.84 865.02 1291.60 569.86 227.64 1007.60

Example graph (in order to show these 10 cities in Chinese
map): Some screenshot of our software is by taking the
example of china map. Distance between the cities is shown in
Fig.1.

The distance, time between cities such as Beijing to Chengdu
is measured by selecting the bubbles. And finally we have
calculated the shortest path between Beijing and Chengdu as
shown in Fig.2. The implementation source code of TSP on
basis of MST and prim’s approach as shown in Appendix.

Appendix : Program
Declare variables and the structure of Vertex at the beginning
of the program.

# include<stdio.h>
# include<stdlib.h>
# include<time.h>

- . 22 ", o~ “w  # include<math.h>
Figure 1. Distance between Chinese Cities # define Max 11

If you want to visit all the ten cities, and start with Beijing, the
best route is:

Beijing -> Tianjin -> Shanghai -> Nanchang -> Guangzhou ->
Wuhan -> Xian -> Jinan -> Chongqing -> Chengdu -> Beijing
Plus, the place with a star is the capital Beijing.

int cn,tt,start;

double arry1[Max][Max];
store distances

double fn=0,gn=0,hn=0;
double f1=0,g1=0,h1=0;
int arry3[Max];

int arry4[Max];

// en-city Numbers
// adjacent matrix,used to

// heuristic function

// mark the cities have been

/I Define Vertex DataType
struct Vertex
{
double x; //longitude
double y; //latitude
} City[Max];

Abowe is an example of this program and the final result is
(starting from 4): 4-1-8-10. +

T T T
T

1:Beijing 4:Tianijn 8:Chongqing 10:Chengdu

Figure 2. Shortest path between Chinese Cities
// main function
int main()
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printf("City[ 1]=Beijing

City[2]=Shanghai\nCity[3]=Guangzhou
City[4]=Tianjin\nCity[5]=Wuhan
City[6]=Jinan\nCity[7]=Xian
City[8]=Chongqing\nCity[9]=Nanchang
City[10]=Chengdu\n");

}

void CityCoordinate();
double CityCost(int,int);
void TSP();

double MaxLengh();

int i,j;
CityCoordinate();

printf("\n");
printf("\n");

for(i=1; i<Max; i++)
{
tt=0;
for(j=i; j<Max; j++,tt++)
{
if(i==j) arryl[i][j]=0;
else arryl[i][j]=CityCost(i,j);
}
}
TSP();
printf("\nBest route£°%d 0", start,start);
for(i=2;i<=cn;i++) printf("%d 0" arry3[i]);

printf("%d\n",arry3[cn+1]);

printf("Overall Distances %.2f km\n",fn);

T T
M

void CityCoordinate()

{
int 1,j,hh=0;
City[1].x=116.46,City[1].y=39.92;
City[2].x=121.48,City[2].y=31.22;
City[3].x=113.14,City[3].y=23.08;
City[4].x=117.20,City[4].y=39.13;
City[5].x=114.17,City[5].y=30.35;
City[6].x=117.00,City[6].y=36.40;
City[7].x=108.57,City[7].y=34.17,
City[8].x=106.33,City[8].y=29.35;
City[9].x=115.55,City[9].y=28.40;

City[10].x=104.04,City[10].y=30.40;
for(i=1;i<Max;i++)
{
for(G=1;j<i;j++)
if(City[i].x== City[j].x&& City[i].y== City[j].y)

i=i-1;

hh++;

43

if(1%2!=0) hh=0;

if(hh==0) printf("\n");

printf("Coordinate of City[%d]: (%.21,%.21); ", 1,
City[i].x, City[i].y);

}
}

double CityCost(int i,int j)
{
int hh=0;
float x1,x2,y1,y2,Distance,t1,t2,t;

x1= City[i].x; y1= City[i].y;
x2= City[j].x; y2= City[j].y;

t1=(x1-x2)*85.39; // 1 longitude=85.39km, 1
latitude=111km

t2=(yl-y2)*111;

t=t1*t1+2*2;

Distance=sqrt(t);

arry1[i][j]=Distance;

hh++;

if(0!=tt%?2) hh=0; // beautify the output, make the
format specification

if(0==hh) printf("\n");

printf("Distance between %d and %d(km)£°%3.2f ", 1, ],
Distance);

return arry1[i][j];
}

// USING MST
void TSP()
{

int Mnode; // starting point, searching
level's father node

int h,i,k,I,m,n,nn;

int x,y=0;

int arry2[Max]={0,0, 0,0, 0, 0,0, 0,0, 0}; // marking array, 0
means already been, while 1 means not

double temp1=100,temp2=100;

double layer1[Max]; // Initialize searching
level's node
double layer2[Max]; // Initialize searching

level's successor node

printf("\nInput how many cities you will be£°");
scanf("%d",&cn);
printf("\n");

printf("Input the number of cities you will visit£®\n");
for(h=1;h<=cn;h++)
{
scanf("%d",&x);
if(0==arry2[x]) arry2[x]=1; // Avoiding repeat
else if(1==arry2[x]) h=h-1;
}

printf("\n");
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for(i=1;i<Max;i++)
if(1==arry2[1i])
printf("%d ",i);
printf("\n");

printf("Input the number of beginning city£°");
scanf("%d",&start);
printf("\n");
arry2[start]=0; // Initial
arry3[1]=start;

arry3[cn+1]=start;

Mnode=arry3[1];

for(i=1;i<Max;i++) printf("%d ",arry2[i]);
printf("\n");
/I Searching route
for(n=2;n<=cn;n++)
{
for(nn=1;nn<Max;nn++)
layerl []"ﬂayer2[]
{
layer1[nn]=0;
layer2[nn]=0;
b

for(k=1;k<Max;k++)
node of Mnode

if(1==arry2[k])

{
gn=gl+arryl[Mnode][k];
hn=arryl1[k][start];
fn=gn+hn;
layerl[k]=fn;

!

s

// Output arry?2([]

// Find city2j«cn

// Initialize

// Search all the successor

for(I=1;1<Max;1++) // Search the first successor
node y and initialize it
if(0!=layer1[1])
{
y=l
break;
¥

for(i=1;i<Max;i++) printf("%d ",arry2[i]); // Output arry2[]
printf("\n");

for(m=y+1;m<Max;m++) //Compare and find the best
successor

{

if(layer1[y]==layer1[mY]) /If the cost of two successor are
same£—search for their next layer nodes

{
Mnode=y; //Regard y as father node at first
arry2[y]=0;
for(k=1;k<Max;k++) // Search all the successor
node of y

if(1==arry2[k])

{

1
gn=gl-+arryl[Mnode][k];
hn=arry1[k][start];
fn=gn+hn;
layer2[k]=fn;
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}
for(1=1;I<Max;l++)
with minimum cost of 'y
if(0!=layer2[1]&&temp 1>layer2[1])

// Find out subsequent nodes
temp 1=layer2[1];

for(nn=1;nn<Max;nn++) layer2[nn]=0; //Initialize

layer2[]
Mnode=m,; //Regard m as father node
arry2[y]=1;

arry2[m]=0;
for(k=1;k<Max;k++)
node of'y

if(1==arry2[k])

{
gn=gl+arryl[Mnode][k];
hn=arry1[k][start];
fn=gn+hn;
layer2[k]=fn;

//Search all the successor

for(1=1;1<Max;l++) // Find out subsequent nodes
with minimum cost of 'm'
if(0!=layer2[l]&&temp2>layer2[l]) temp2=layer2[l];

arry2[y]=1; arry2[m]=1;
if (temp1>temp2) y=m;
1
s
else if(0!=layer][m]&&layer1[y]>layerl[m]) y=m;
} //Compare and find the best successor

for(i=1;i<Max;i++) printf("%d ",arry2[i]);
printf("\n");

gl=gl+arryl[Mnode][y];

Mnode=y;

arry2[y]=0;

arry3[n]=y;

}

for(i=1;i<Max;i++) printf("%d ",arry2[i]);
printf("\n");

fn=gl+arryl[y][start];
h

VI. Results and Discussion
For example, a salesman wants to visit Beijing, Tianjin,
Chengdu and Chonggqing, and start his trip in Tianjin.
Result is shown as follow.

how many city you would evisit: 4

the numebers of cities you are about to visit;

number of starting city: 4

IEEEEEE®
[~ R
EEEEEE®
IEEEEEE®
eSS ®
[
EEeEEE@
T b s i ek

hest route starting from 4 is: 418164
total distances: 1685.31 km

Figure 3: Find optimum route
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Conclusion
This kind of problem is a typical NPC combinatorial
optimization problems (NPC = Non - deterministic

Polynomial complete, is the uncertain and complete problem
of Polynomial complexity. The mathematical description of
TSP is: In a graph with weights, find the minimum Hamilton
loop. In cities of number N, every two cities have connected
path, whose quantity shall be N * (N - 1) / 2. For undirected
connected graph containing n vertices, the quantity of
complete graph's edges is also n * (n - 1) / 2, therefore, we can
use fully connected undirected graph which contains n
vertexes to image the known conditions of TSP problem. A
minimal spanning tree is a minimal connected subgraph of a
connected graph, it contains all the n vertices of connected
graph, a minimum spanning tree, is a spanning tree whose
price is the least among all the spanning tree of this graph.
Therefore, for solving TSP problem, we can use the method
of calculating the minimum spanning tree using prim’s
algorithm.
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