International Journal of Engineering Research And Management (IJERM)
ISSN : 2349- 2058, Volume-01, Issue-06, September 2014

Custom Hardware Synthesis from UML

Michael Dossis

Abstract—The proliferation of extremely complex digital
embedded and large computing systems have made the
need for Electronic Design Automation (EDA) tools to
accelerate their development and achieve higher overall
productivity. Due to functional bugs that are found later
in the design flow, as well as the iterative nature of such
design methodologies, which delay a lot the development
of their targeted products, industry and academia needs
to invest to formal synthesis transformation techniques
from high level specification formats such as UML. In this
work high level and formal synthesis tools have been
developed and integrated with electronic system level
specification (ESL) techniques to automatically generate
custom hardware circuits from UML. Because the
transformations are formal the functional correctness of
the generated implementations is guaranteed with respect
to their UML specification. The proposed tools and
methodology are proven usable with a number of
real-world applications and benchmarks that are
executed and synthesized into hardware implementations
with the formal synthesis framework.

Index Terms—UML, Formal Hardware Synthesis,
EDA, High-Level Synthesis.

I. INTRODUCTION

The recent years we witness an extremely high proliferation of
complex embedded and advanced computing system digital
integrated circuits (ICs) that constitute critical parts of the
system’s functionality. This complexity has burdened the
work of the developing engineers and created a long
design-to-product cycle. This long development time has
often made the targeted products to miss the market window
and has forced the engineers for including last-minute next
version - related functionality into the current product
version.

This high complexity of digital products and ICs can be
realistically dealt only with fully automated and formal
techniques and ESL design tools. These tools will generate
provably-correct implementations only if they are based on
formal and automated synthesis transformations. In order to
raise the level of specification abstraction, high level
specification formalisms such as UML are needed.

The major contribution of this work is a formal
methodology and tools for automatically generate correct
RTL VHDL/Verilog synthesizable implementations from
system level UML diagrams. The generated implementations

Manuscript received July 20, 2014.

Michael Dossis, Department of Informatics Engineering,
Technological Educational Institute of Western Macedonia,
Kastoria, Greece

173

follow the first-time-right fashion and using this methodology
last moment bug discovery and fixing are avoided. The
underlying technology consists of the CubedC tools that were
designed and developed by the author of this work. These
tools take the automatically generated from the UML
diagrams ADA code and formally and optimally transform it
into a number of standalone hardware accelerator
implementations. The generated accelerators are coded in
IEEE std VHDL/Verilog (chosen by the user) and they are
directly and with no manual alteration synthesizable into
custom hardware using any academic or industrial RTL
synthesizer. Apart from the type of the generated HDL code
the user has in his disposal a number of custom hardware
options, such as the location of large multi-dimensional
objects in external memories and the choice between a
massively-parallel architecture and a conventional
FSM+datapath template. Moreover, the CubedC synthesizer
can be guided with global or module-related resource
constraints. These are fed into the embedded PARCS
(Parallel, Abstract Resource — Constrained Scheduler)
optimizer to generate optimal state machines for the
accelerator control part.

The usability of the proposed UML-to-hardware design
method is proven with a number of prototyped applications.
Next section provides related existing work and
bibliographical discussion. Section III presents the proposed
design flow and CubedC tools. Section IV presents the UML
set of diagrams used for our applications. Section V discusses
experimental implementations from selected benchmarks.
The last section draws useful conclusions and proposes future
work.

II. RELATED WORK AND BACKGROUND

A. UML for systems and hardware modeling

UML has been used extensively for software system level
specification. It contains a number of diagram types and
relations that define the functionality and other attributes of
software system level descriptions. It is primarily a modeling
language that has standardized the visualization of software
systems. Since 1997 that was standardized it is managed by
the Object Management Group (OMG). The most common
UML diagrams include the class diagram, the packages, the
object diagram, the component diagram, the activity diagram
and the use-case diagram, state machine diagram and
interaction diagram and other diagrams that are derivatives of
these [1], [2]. UML diagrams fall into two major categories:
the diagrams that represent structure and those that depict
behavioral aspects [1], [2], [3].

There have been a few efforts to use UML as a modeling
format for hardware and systems, such as Systems-on-Chip
[4]. Nevertheless, none of these efforts were based on

www.ijerm.com

Custom Hardware Synthesis from UML

automated methods using formal techniques such as the one
of this work. Moreover, this paper’s approach is based on
formal transformations and it uses UML as the starting level
of a automated synthesis tools methodology that is applicable
to any type of custom digital circuits hardware.

B. Introduction to the CubedC Formal Framework

Al techniques, such as expert systems, inference engines
and rule-based frameworks built with logic programming
techniques have been long investigated and found very
suitable for their use in safety-critical applications and
industrial level product design systems [5]. Nevertheless up to
date, there are not complete toolset reports that are based in
Al methodologies and that deliver standalone hardware
coprocessors which speed up their host environment tasks.

The toolset consists of the frontend compiler and the
backend compiler. These two compilation phases
communicate and exchange information by means of the
Intermediate Predicate Format [6] (IPF) database. IPF' has
been enhanced through many years of research, to capture the
complete set of the source code algorithmic semantics (e.g.
data typing, operators, complex control structure and
hierarchy, interfacing, etc.).

C. High-Level Synthesis Related Work and Background

An early work that reported synthesis of algorithmic DSL
code into hardware implementations is found in [7]. The use
of FPGA accelerators to speed up their host computing
system performance is found in [8]. The use of proprietary
specification formats, and targeting of specific domains (e.g.
DSP) or certain architecture templates are reported in
[9]-[11]. The High-level Synthesis scheduling task has been
studied in [5], [12]-[14]. In contrary to most of the available
synthesis tools, the presented synthesis framework can
process any arbitrary program code sets with as much
complex control flow. There are no restrictions in the subset
of the ADA language which is accepted by the frontend phase
of the design framework synthesizer. Moreover, the input
code can be hierarchical with as many subroutines as needed
calling other subroutines.

Formal intermediate representation formats, can be found
in [15]-[18]. Compiler-generators have been utilized to
automatically generate large parts of compilers using formal
input code syntax definitions [16]-[18]. Past circuit interface
synthesis attempts along with the core functions generate
protocol conversion circuitry for connecting multiple
modules that have different and arbitrary communication
protocols with the host environment [19]. High-level
Synthesis of a small subset of the ANSI C language into
efficient hardware can be found in [20].

Techniques to optimize data-flow expressions based on the
Taylor Expansion Diagrams are described in [21]. An
approach for reducing the power consumption of memory
elements using dual power supply voltages is found in [22].
Rapid prototyping from SystemC models is reported in the
SystemCoDesigner tool [23].

! The Intermediate Predicate Format is patented with patent number:
1006354, 15/4/2009, from the Greek Industrial Property Organization

174

II1. UML DESIGN FLOW AND CUBEDC TOOLS

The UML flow that we followed was based on the tools
WinA&D from the company Excel Software [24]. WinA&D
can support UML class diagrams and dictionary for regular
package-based ADA specification code. The ADA package
can be directly generated from interactive processing with the
WinA&D UML diagrams front.

The generated ADA package from the WinA&D UML
front is then passed onto the CubedC tools for hardware
synthesis into RTL VHDL/Verilog [25]. Then the RTL code
is implemented into any target ASIC or FPGA technology.
The UML to hardware design flow is shown in Fig. 1.

UML specification
diagrams
A g CubedC backend
- compiler
software compilation T
into ADA code
f High-Level Synthesis
CubedC frontend IPE
compiler loading \

\ Ay

IPF ilati
compilation RTL

* implementations

IPF Prolog
facts

Figure 1: UML to hardware implementation design flow

The CubedC compiler consists of the frontend (ADA to
IPF) and backend compiler (HLS tool). The HLS CubedC is
based on formal rules which are constructed with a large set of
inference engine Prolog statements [25], [26]. Therefore, and
since the frontend compiler is constructed with automated
compiler-compiler techniques the whole hardware synthesis
flow is formal. Thus, the generated hardware implementations
are provably-correct in regard to the input UML diagrams and
ADA specification code.

At the moment, UML class diagrams and the dictionary are
used to capture the functionality of the ADA targeted code.
The code structure consists of an ADA package (library
module of this language) and a number of global type
declarations and subprograms (if necessary) to capture the
semantics of the algorithm to be prototyped.

Preferences: c:\program fileslexcel softwarelwinatd 3.5\myadatestimyproject.ini

General Language Specific]

Ads Preferences)
Marker to Discard File Header

Oceunence: |2 %] of |-~ V¥ Include Marker

Marker ta Capture File Speciic Headsr

Occurrence: |3 =) of |- [Include Marker

Custom Text File Filker

Name:|Code files(* 1.ada* 2 ada:* ads:* adh]
Filter: |%1.5da;".2.ada" ads." adb

W Captuis Comments [~ Colect Intersperced Comments
Code Key

Kep Prefin: [~ &
Kep Sulfs; [&

Cancel

Figure 2: The WinTranslator project parameter configuration screen

www.ijerm.com

International Journal of Engineering Research And Management (IJERM)
ISSN : 2349- 2058, Volume-01, Issue-06, September 2014

The frontend UML translation tool of Excel Software is the
WinTranslator. It needs to be configured for ADA code
generation. The initial screenshot that contains this
information about the tool configuration and starting of a new
project is shown in Fig. 2. In order to guide the ADA code
generation process several parameters are set in the tool as
shown in Fig. 3.

Customize Ada Code Generation =]

Spesiication Suffix [1.ada Body Suffic. [-2.ada ool ToTote

[Package Spec
¥ Add Browse References ¥ Code Key
[Package Body

¥ Combine Package Specification and Body Inta One File
[~ Attiibute Declaration
I Generate Hard Carriage Returms [Sp+Sp+CR)

[~ Atribute Private Part (where applicable)
¥ Replace Tabs With Two Spaces

Code File References

& ~ I Subprogram Spec
¥ Stub Subprograms [is separate”] Eone Blowse

Subunits I~ Subprogram Body
@ Dot Generste ¢ Generate Once (Regenerale | | [~ Subprogram Subunit (where applicable]

I~ Mested Package and Subprogram Notes Start in Coluran 1

Comments in Notes Parnel
I File Header Pick

& Ma Section Dividers

I~ SubpregismFile Header [Pick | | ~ Siandard Section Dividers

Templates for Notes Panel of Distsils Dislog £ cBistom saction Dikwdars
Class: [0 2] awibue: [0 2] Operation: [0 2] | | Press F1 for Instructions on Using Sections
I™ Confim Code Fils Replacement [Open Generated Code Cancel

Figure 3: The ADA code generation customization screen

During generation of the ADA code, and if several ADA
types need to be defined the screen in Fig. 4 shows how to
define the types attributes for the ADA classes.

Build DataT;ypE 8]

|
Simple | Record | Anay |

 None (" Subtype (" Mew (Aecess O AccessAl Private O Limited Private

Erumeration: x

Data Tupe:

Dela:

Range

[
[
Digits: [
[
[

Mod

Topes Cancel
Figure 4: The ADA type attribute settings in WinA&D

For the selection of collection of types and their attributes
the screen in Fig. 5 is used.

Select Ada Package >

+éda Characters. Latin_1
+ida Strings Unbounded
+Clas:

+Field

+Figld. Operations

+Field Operstions Real_Rand
~Gidk.Event

~iGili

+Gtk.Arguments

+Gitk Bou

+Gitk Handlers Callback
~Gitk Handlers R eturm_Callback
+Gitk Label

~Gitk M ain

+Gitk Scrolled window

~Gitk T able

+Gitk Text

Gtk Toggle_Buttan

~Gtkada Dialogs
+Pragm&RC. Protected_Option
~Progm&RAC Universal |_Fiandom

Predefined &da Topes

Figure 5: The types collection and attributes screen

By using the collection tool, and if the ADA language has
been chosen, certain class relations between classes can be

175

defined. Since the dictionary contains all the essential ADA
constructs, for the certain program, using the class relation
dialog we can add any program attributes by using the
command merge. There can be more class instances in a UML
diagram, in different diagrams in a project or multiple classes
in a UML specification. In the same way, there can be
multiple class relation instances in a UML diagram, in
different diagrams or different ADA class definition
windows.

Aggregation relations as shown in Fig. 6, are defined
between two class objects in order to represent ADA parent
and children packages.

<

Parant Parent.Child

Figure 6: Aggregation relations between class objects to define package
relations

An Aggregation Relation By Value as shown in the
diagram of Fig. 7 determines that the ADA code of the child
package will be integrated and embedded in the parent
package. The particular relation is defined with the Export
Control at the parent side, where the “+” (Public) signs
denotes embedding in the Public part of the parent package,
the “-*“ (Private) sign denotes embedding in the private part
and “=" (Implementation) denotes embedding of code to the
parent package body.

>
+

Parent Parent .Child

Figure 7: UML package relation with the type definition of the kind of
the aggregation relation

A general ADA package is defined with the formal
parameters in a dashed parallelogram in the class object side,
as shown in Fig. 8.

Integer=+Datalype

femsmssmmemm—ma- 1

Datalype |

1 ralowations |

Figure 8: the class to object relation with the formal/actual parameters

Integer Calculations

In the same relation of this figure, the actual parameters are
shown with the parallelogram connected to the respective
class box. The particular relation of the general package
shows the actual parameterized class to point to the formal
class with the type of arrow as in Fig. 8.

The relations of type Dependence between class objects,
generate With statements in the generated ADA code. These
are library reference statements, and they are denoted with a
dashed line arrow, as in Fig. 9. The Export sign at the left side

www.ijerm.com

Custom Hardware Synthesis from UML

of the diagram of this figure, determines as to whether the
With declaration belongs to the body or the declaration of the
ADA package.

Similar diagrams apply to other generated ADA constructs
as types, declarations, subprograms, variables, parameters
and so on.

lser If

Operations
. {Confir}

Figure 9: Type of body package Operations depends on package
User_If

A. UML class diagram generation and ADA
translation

WinA&D focuses on ADA code generation and relevant
UML diagram translation and configuration. WinTranslator
processes source ADA code and creates a number of
dictionary entries that are inserted in WinA&D to generate
UML class diagrams. In any case the object-oriented features
of ADA such as named records, and type casting/extensions
are not supported. Nevertheless these features are not yet
supported in the CubedC synthesizer so this doesn’t affect the
present work. In our design flow, UML class objects model
ADA packages, object relations model aggregation,
inheritance and dependence relations between ADA
packages.

When a new class object is added to the UML diagram, the
corresponding dictionary entry is initialized in the class
property window as it is shown in Fig. 10.

Class Properties st

Generst |

Name:

[Operations

Package Name
[Field Operations

Displayed &
[Field .0 perations

Stereotypes

Tupe: Properts:

Child Diagrara:

Mew Diagram

Cance!
Figure 10: UML class object properties to be targeted to ADA

The package name is entered in the respective field as
shown in Fig. 10 and automatically appended in the
“Displayed As” field. For a child-package it is possible to
delete the prefix from the Displayed field, and leave only the
name that matches the UML diagram entry. The merge
instruction adds a dictionary entry with the name of the
package that it is entered as described above. The “Class
Attributes and Operation” dialog window is used to enter the
various algorithmic properties and features of a class. After
entering all these details, appropriate dictionary entries are
created for the UML diagrams.

Many fields in the dialog window of Fig. 10 are used to
define the exact type of the ADA package that is modeled
with the respective UML diagram class object. For example,
the Type field can be set to either of the following: Single,
Utility, Parameterized or Interface. All other types of classes

176

are ignored during ADA code generation. The Simple class
type models a package that can create instances of one or
more class objects.

As mentioned above, the “Class Attribute And Operation”
dialog window is used to enter many details and features of
class objects. The class attributes fall in the following
categories: State, Object, Type, Exception or Misc. The
attribute type defines how the particular property will be
mapped onto the generated ADA code detail using the
WinA&D code generator. For example, the code generator
places attributes of type State in record entries that are
declared in the Public, to Private or Implementation section
of the package code.

The class of type Utility is similar to the simple class,
except that there is only one class object, the class itself. This
class type is the most safe because it hides most of the class
information since there is no public declaration of its data.
During the code generation the parameter entries are placed in
the package body along with the entries of the variable
declarations.

The interface class type models a package of types that
contains a list of type declarations but it doesn’t contain any
subprograms or parameters. For an interface class only a
single package specification is generated, with no package
body.

A Parameterized type of class, is used to create generic
packages and instances. The parameterized class is similar to
the simple class in the UML diagram, but with an extended
parallelogram at the right upper corner of the class box, as
shown in the example of Fig. 11.

fresseccscceceanny

Datalype |

Calculations

Figure 11: Parameterized class Calculations

The extended parallelogram contains a list of parameters of
the class, which are defined in the Parameters field of the
Class Properties dialog. This field is like the name in the
Displayed as field and it is used only for the diagram
appearance. After entering the parameterized class in the
dictionary the Class tab of the “Class Attributes And
Operation” dialog is used for the definition of the parameter
list which is required for the code generation.

This type of class models a generic package. This class may
contain properties and operations that are declared in the
generic package. During the code generation, and for every
parameterized class both the package interface as well as the
main package body files are processed and modified
accordingly with the UML diagram definitions.

B. Class Attributes
As soon as the UML class diagram is designed and added in
the dictionary, detailed information about every class can be
entered and defined. Using the Details button on WinA&D

www.ijerm.com

International Journal of Engineering Research And Management (IJERM)
ISSN : 2349- 2058, Volume-01, Issue-06, September 2014

“Class Attributes And Details” dialog window appears and it
becomes ready for editing. The Attributes tab of this dialog is
then used to define most of the properties of an ADA package
except for the subprograms. The Operations tab of the dialog
can be used to define the ADA subprograms.

In order to define an attribute list the attribute names are
entered in the respective field at the bottom of the dialog
window and using the buttons New or Insert. In order to enter
details of every attribute a double click on its name shows the
“Attributes Details” dialog window, that is used if the ADA
language has been selected and provides information related
to this language, as shown in the snapshot screen of Fig. 12.

We can change the choices in this menu using the Types
button, which shows every time a list of all the packages that
we have defined in our UML WinA&D project. This process
is depicted in the choice window of Fig. 13.

EEESTAds Package e

Gt Arguments
G Bax

I 2
+GHK. S cralled_Windaw
+GHk. Table

G Teut

+Gtk. Toggle_Button

+Gtkada Dialogs

Attribute Details: Choice_String [=[=] =]
e
I [Kind
C Se @ Ty O Obiset O Excepon C Misc
hecess
& Publc (rivale " Implementation
Type Definion I Manusl Type Defintion Editing
sUbtype V_Sting Bounded_Sting
Sterealypes
‘ Description:
' (Notin Code]
|
SR oK Cancel

Figure 12: The attribute details dialog window for the ADA type
Choice_String definition, from the WinA&D UML frontend.

The kind of attribute can be selected amongst the
following choices: State, Type, Object, Exception and Misc.
By doing so the window fields change as we select the
attribute type.

C. State Attributes

The object instance in an object-oriented design has a state
that is defined from the State Attributes. For an attribute of
type State the Access field contains the choices: Public,
Private, Protected and Implementation. The available choices
depend on the object type. As an example the Simple class
allows for Public, Private or Protected state attributes, while a
Utility class allows only Implementation State attributes. An
Interface class does not have any state so it doesn’t allow for
State attributes.

The kind of access to every State attribute, applies to all the
State attributes throughout the whole class set. During the
code generation all the State attributes are created in a
package entry. The defined attribute can be either a
component or a discriminate of the package entry using the
State Type selection buttons.

Using the Class Properties dialog we can define the class
type and then we can transfer it to the dictionary with the
Merge command. The value that is stored in the dictionary
determines which choices will appear in the Attributes Details
dialog window. If we change the class type in the dialog Class
Properties we have to use subsequently the Merge command
so that we update the dictionary. The Data Type and Value
fields are used to define the component features. The Data
Type field is associated with a choice menu with available
type names.

177

pt 1_Dption
+PragmafiC. Universal_R andom

P

redefined Sda Types

Figure 13: Select Ada Package list of package types to select one

D. Type, Object and Exception Attributes

If we select Types Attributes we can define the visibility
using the Access button as follows (after the code generation):

» Public declaration is the one that is included in the public
part of the package declaration.

* Private declaration is the one that appears in the private
part of the package declaration.

» Implementation declaration means that it appears in the
main body of the package.

The Type Definition field if activated shows the Build Data
Type dialog window, with an example shown in Fig. 14.

[Data ‘I:.ype []

Sinple | Record | Anay |
Il
@ HMone © Subyps © New (" Actess (AccessAl (Prvate (Limted Piivate

Enumeratior: -

Types Cancel

Figure 14: Build Data Types dialog window for the construction of
ADA type definitions

In order to declare a public or private type we can set the
Access selection as Public. In the Build Data Type dialog we
can select Private or Limited Private. Thus, the type
declaration is public but its implementation is private.

The Build Data Type dialog window has three panels:
Simple, Record and Array, which determine the kind of type
we want to create. With the OK button only the data we
entered in the selected panel is used and the data of other
panels are deleted. The Simple panel is used to define all the
types and subtypes of ADA except the composite types such
as records and arrays. When the type is based on existing
subtype it can be selected from the respective menu. In order
to change the types that appear in the menu the Types button

www.ijerm.com

Custom Hardware Synthesis from UML

is used and a package is selected.

The Record panel is used to define ADA records. It has two
sections, one for discriminate definition and one for definition
of the record’s elements. In every section, the Type field
reports defined types in it, or in other packages that we have
already defined. In order to make the window with the
available types appear, first a cell needs to be selected in the
Type column and then using right click. The Array panel
contains a matrix for the definition of one or more array
dimensions, where of course we need to select the type of the
array’s elements.

The Object property in the Attribute Details dialog, is used
to define variables, constants, deference constants and named
numbers as determined by Object Type button. In the same
dialog window, the exception property is used to define ADA
exceptions for the particular package.

E. Miscellaneous Attributes

The Misc attribute provides a field with free text in order to
define various declarations. In this field we can define
Representation clauses, Pragmas, imports or other element
types of the package that don’t fit in any of the previous
categories. During the code generation the text in the
Declarations field is mapped directly in the ADA code that is
created by the tool.

F. Class functions and subprograms

In order to define a list of functions we type the name of
each procedure and function in the bottom part of the
Operation panel of the Class Attributes And Operation dialog
and we use the New or Insert buttons. The various details of
each subprogram are entered using a double click on its name.
By doing so the Operation Details dialog appears which
provides information related to the ADA language.

If the subprogram is a function then the type of the returned
data (results) is defined in the Return Type field. A new type
can be written or one of the existing types can be selected
from the selection menu. In order to modify the list of
available types the Types button is used and then a package is
selected.

Operation Details: Process el e i i
General | Custom | Motes |
FRetum Type: [Choice_id Tupes
Stereotypes
Description: (Mot in Codel Access: Kind
Public & Nomal
Piivate © Generic
€ Instanfiation
Operator. £ Mise
Formal Parameters (One Per Line): [~ Manual Ediing I~ Body Imported
[fans : in Mans_Info
Implementation Notes:
P

Figure 15: The subprograms definition dialog window

The definition of operations and subprograms is done via
the Operations Details dialog window as shown in Fig. 15. In
order to access the Build Subprogram Argument dialog
window we select the Arguments field. In order to modify the
list of parameters and arguments we select the selection box
Manual Argument Ending. The Build Subprogram
Arguments dialog allows for quick definition of the

178

arguments in the lines of the matrix of Fig. 16. If a field in the
column Data Type is selected the available type list appears
with the right click. Many operation types can be defined in
the Operations Details dialog window.

Build Subprogram Arguments =]

In ‘DuAIAccess‘ Name IData Tupe ‘Dalau\l I Fi

in benu Menu_Infa

Select Type cell and Right click
o for popup Types menu,

e Cwca

Figure 16: Building of Ada subprogram parameters using the Build
Subprogram Arguments dialog window

The Generic choice is used to create a generic type
subprogram and subsequently we define its arguments in the
Parameters field of the oto maved Special panel which then
appears. In order to create an instance of a generic
subprogram we create an operation of type In station and we
use the respective panel to define the subprogram name and
its actual parameters. The Package button allows to select a
package so that the selection menu of the field Generic
Subprogram shows all the generic subprograms of this
package. It is important to note here that the subprogram is the
building block of the ADA algorithm that generates a module
of digital coprocessor in the targeted VHDL or Verilog code.

The Body Importer selection box is used to define an
operation which uses a Pragma entry instead of the main body
of a subprogram. ADA allows to produce an implementation
for operators such as “+”” and “="but these characters are now
allowed in the name of a dictionary entry. In order to define an
operator we give it a name using alphanumerical characters,
such “Plus” or “Equal” and then we write its actual name in
the Operator field of the Operation Details dialog window.

-a

IR — SE |

Hes U@

a¥—=Doe~O0o04~

Figure 17: AudioControl UML diagram entries

IV. UML DIAGRAMS FOR OUR TESTCASES
A. Audio Control
For this application a program is constructed which
implements volume control and balance of a sound stream in
real-time. For control Rotary Encoder components are used.
Fig. 17 shows the UML diagram of AudioControl. In this
figure both the dictionary entries and the class diagrams of the

www.ijerm.com

International Journal of Engineering Research And Management (IJERM)
ISSN : 2349- 2058, Volume-01, Issue-06, September 2014

Audio Control application are shown. The following part of
ADA code is automatically produced with the code generator
of WinA&D.

Package AudioControl is

procedure ProcessStream

(AudiolnLeft, AudiolnRight : in INTEGER; BalQuadEncA,
BalQuadEncB : in BOOLEAN;VolQuadEncA, VolQuadEncB : in
INTEGER;AudioOutLeft, AudioOutRight : out INTEGER);

end AudioControl;
package body AudioControl is

procedure ProcessStream
(AudiolnLeft, AudiolnRight : in INTEGER;
BalQuadEncA, BalQuadEncB : in BOOLEAN;
VolQuadEncA, VolQuadEncB : in INTEGER;
AudioOutLeft, AudioOutRight : out INTEGER) is
Volume, Balance : INTEGER,;
begin
if BalQuadEncA then
if BalQuadEncB then
if Balance < 100 then
Balance := Balance + 1;
end if;
else
if Balance > 0 then
Balance := Balance - 1;
end if;
end if;
end if;

if VolQuadEncA then
if VolQuadEncB then
if Volume < 100 then
Volume := Volume + 1;
end if;
else
if Volume > 0 then
Volume := Volume - 1;
end if;
end if;
end if;
AudioOutLeft := ((100 - Balance) / 100) * (Volume / 100) *
AudiolnLeft;
AudioOutRight := (Balance / 100) * (Volume / 100) * AudiolnRight;
end ProcessStream;

end AudioControl;

The generated ADA code is then automatically and
formally transformed and optimized, using the CubedC tools,
into synthesizable VHDL RTL, which in turn is implemented
on FPGA hardware.

B. MPEG

This application implements image compression that
complies with the MPEG-1, ISO/IEC 11172 : 1993 standard.
This image compression utilizes realistic methods of
compression to significantly reduce the percentage of the data
which is required for the regeneration of the image. It reduces
or rejects on certain frequencies and spectrum areas that the
human eye doesn’t completely realize. Moreover, it exploits
temporal and spatial deficiencies of the human eyes to achieve
even greater data compression. Fig. 18 shows the UML
diagram of the MPEG application.

The generated ADA code is too long to include in this
work. It is synthesized using the CubedC tools into hardware

179

implementations, the generated RTL is simulated to prove the
first-time-right argument and then it is placed and routed on
either ASIC and/or Xilinx FPGA technologies.

= | o

L2 CLsS mpes L mpey
o T

&¥I—=De~OoO4As
L

Figure 18: The MPEG-1 video compression engine UML specification

All the testcases in this work comply with the latest
standards of UML and recent specifications and
developments of OMG [27]-[35].

C. Computer Graphics Application

This UML specification defines an application that given
the start and end coordinates it draws on the screen a straight
line, using the digital differential analyzer (DDA) algorithm.
The calculation of the pixel coordinates uses only integer
numbers.

g5 .o el

Biamws -
Fle 38 Raptn Vindon Digrm Tabe Detonsy Requrenant Fomat Option

Ak] 2> BEEEECEDE 998 £ BT

T
]
L < 4
o
o
i

&

Figure 19: The line drawing application specification in UML diagrams

The DDA application specification in UML diagrams from
the WinA&D screenshot is shown in Fig. 19. As in the other
applications, in this case the generated ADA code is formally
transformed and optimized into hardware and then
implemented in FPGA technology using commercial backend
tools. For reasons of space economy the application code is
not included in this work.

D. Picture Edge-detection using Cellular Neural
Networks

The authors of [36] developed and implemented a formal
design flow for HLS of cellular neural network (CNNs)
applications in hardware. The CNNs process images in
real-time. The applications here target edge detection,
intermediate tones and morphological image processing, and
these can be used for medical, military or commercial
surveillance applications.

After the UML is constructed it is used to automatically
generate ADA code which in turn is transformed and
optimized into hardware using the CubedC and backend RTL
synthesis tools. In every case the generated implementation
was simulated to prove the author’s argument and
cross-checked with high level verifications of the ADA
algorithm and the rapidly prototyped hardware

www.ijerm.com

Custom Hardware Synthesis from UML

1mplementat10n in FPGA hardware.
IW Sk ‘ -

nz@ i '“’Dxlllllﬂ IIII alu'sl,z:HF:::r

(8 oCTONAR: Con Edge0D [BEE]

o |
5|

<
G¥I—De~Oo0=ds

|« ot

Figure 20: Image processing with CNNs application in UML diagrams

A snapshot of the UML diagram specification of the CNN
edge detection application is shown in Fig. 20.

V. Experimental Results and Implementation Statistics
A. Simulation of Generated RTL Implementations

We observe rapid nature of our methodology from is a
nested loops benchmark, which includes nested loops of 2
levels and it derives from a civil engineering application. In
this test’s statistics, from the very compact program code of
the nested loops benchmark ADA model (155 lines of code),
the hardware compiler optimizes about 100 initial FSM states
and the produced optimized schedule is coded in about 2000
lines of optlmlzed lines of synthesizable VHDL code.
r J wave - default -
File Edit View Add Format Tools

==& & 2R

Window

results_read

mem_dt_out
< mem_addr
< mem_rd

mem_wr

mem_readb_write
rd_bar
cs_bar

4 wr_bar

mem_dt

mem_addr_ccc
mem_addr_init
mem_dt_init
init_priority
mem_we_init

Figure 21: Simulation of the Start event of the n.l. test

The rapid increase in number of VHDL lines in
combination with the large number of FSM states (100) is
something particularly cumbersome to be dealt with
manually, even by the most experienced hardware engineers

180

and RTL code designers. All our tests were simulated both at
the ADA compiled coprocessor package plus testbench
model, as well as at the RTL simulation level and the results
from both verification levels were compared and they found
to coincide. The Start event of the initial nested loops
schedule is visible at the simulation waveforms of Fig. 21.
The reader can observe the Start pulse as well as the rising of
the Busy signal which completes the handshake
synchronization with the controlling computing environment
(e.g. a host processor). At the bottom of this screen snapshot,
there is an ever-updating clock cycle counter (cc), which at
the Start rising time shows 40009 clock cycles. This is due to
the preceding memories initialization with the array data.

A few clock cycles after the Start event there is some
activity starting, as it can be observed from Fig. 21, on the
memory interface signals, with names that usually have the
prefix “mem_”. The memory interface signals are used to
fetch from and store data on external, shared memories. The
read and write strobes (mem rd, rd_bar, etc.) are shown
which control the memory read and write cycles.

| |_wave default

File Edit
B
& ke |

SHAN| |\ oo ke E|aaas

View Add Format Tools Window

done
results_read
mem_dt_out
mem_addr
mem_rd

mem_wr
mem_readb_write
rd_bar

cs_bar

wr_bar

mem_dt

mem_addr_ccc
mem_addr_init
mem_dt_init

< init_priority
mem_we_init

o

Now E30ns
Cursor 1
Cursor 2

162 ns.
230 ns

o R

[Now: 8,497,330 s Delta: 4

3497062 ns to 8497339 ns

Figure 22: Simulation of the Done event of the n.l. test

The Done event, which signals the completion of the
coprocessor function and the production of the final result on
output “pout”, giving the particular value of 30066, is shown
in Fig. 22. This particular value was produced from the ADA
code verification by using the same values for the design’s

www.ijerm.com

International Journal of Engineering Research And Management (IJERM)
ISSN : 2349- 2058, Volume-01, Issue-06, September 2014

array components. In Fig. 22, the Busy signal goes low at
8497230 ns, and allows the external environment to conclude
the handshake with a rise on the results_read input. Since the
Start even appears at cc=40009 and the Busy event is on
424861 cc, it means that the unoptimized RTL completes the
coprocessor calculations in 384852 cc, which, using a clock
period of 20 ns it gives a total execution time of 7697,040 us,
or about 7.6 ms.

File I':clrt View Md Format 'Enn‘]: Window

IJ EEHE| L hAn
|aala|£5&f
EECEINCET 3 1

|4 e B o ELEE S PR

B0132 s to BOOTS0 ns

|Nuw 7,150,710 ns Delta: 2

v —'ﬂ
Figure 23: The Start event of the optimized (with PARCS) coprocessor

Of course the ADA verification, using compile and execute
methods is much less verbose, portable, compact and easy.
Considering this, and taking into account the formal features
of'the CCC transformations we can deduce that we can rely on
the high-level behavioral code verification for a vast plethora
of designs, without the continuous headache of detailed,
heavy and slow RTL or even more gate simulations.

So far simulation data from the raw initial schedule of the
massively parallel coprocessor were discussed. Fig. 23 and
Fig. 24 give the Start and the Done events of the
PARCS-optimized coprocessor. Fig. 23 shows a Start time of
800200 ns and Fig. 24 shows a Done time of 7150710 ns.

This gives us a PARCS processing time of 6350,510 us,
which is about 6.3 ms. This is a reduction in processing time

181

of about 17%. This is a significant improvement over the
initial scheduling in a very control-intensive design with a
large number of nested control constructs such as for loops
and ifthen blocks.

To confirm, once again that all these simulations
(unoptimized and not) produced the same results, between the
massively-parallel simulations and the FSM+datapath

simulations, as well as compared with the verification trials on
the ADA complled & executable specifications.

Edrt View Add Format Tools

|bes@& s 2@

File Window

IEERIrTE
SHBN| |\ mm B &

|4 &= o EAER BT R Y

dodk
reset
“ start
busy
pout
done
results_read

Imax

mem_dt_out

L
1]
S R | |
mem_addr 3 [1 1]
mem_rd |
mem_wr 1
" mem_readb_write 1
rd_bar
cs_bar
* wr_bar
mem_dt 30066]
39999 [1 1 |
40000 E 1

mem_addr_ccc

mem_addr_init 000
40000

memn_dt_init 40000 :
| ' init_priarity i] I
| mem_we_init i | |
i > - 357534 D33j3333333333?3333333333333333 :
Il

Mow pO7F10ns

Cursor 1
| Cursor 2

P5169 ns
30700 ns

] Ty

17
i |
.

Figure 24: The Done event of the optimized (PARCS) coprocessor

| 7150401 ns to 7151042 ns

[Now: 7,160,710 ns Delta: 4

B. Benchmarks and Implementation Statistics

A large number of design benchmarks were executed
through the design framework. Nevertheless, five of these
tests are analyzed here. They include a FIR filter from the DSP
domain, the classical high-level synthesis benchmark which is
a differential equation solver, an RSA design from
cryptography, a test with nested for loops, and a large MPEG
video compression design. An important conclusion is a
dramatic explosion in the number of code lines and characters
as we move from the very compact ADA code to the generated
RTL models. From the experiment statistics in Table I, it
seems that the behavioral ADA model is sometimes more than
10 times smaller and more compact than the generated VHDL.
This is only one of the indices of the reduction in design

www.ijerm.com

Custom Hardware Synthesis from UML

complexity for the users of the presented methodology, against
those that insist in the conventional RTL hardware design.

TABLE I. STATISTICS OF THE FIRST FOUR DESIGN BENCHMARKS

Differ. eq. RSA mod
solver exp

nested

FIR filter
loops

number of
subprograms in 2 1 5 6
the source code

number of lines

62 31 226 155
of source code

number of
characters of
source code

1021 457 3690 2741

number of
VHDL entities 2 1 5 6
produced

total number of

VHDL lines 373 200

1519 2000

total number of
characters in
VHDL code

11190 3663 47595 78928

initial
schedule’s 17 20 16 97
FSM # of states

optimized # of

10 13 11 81
states

front-end
compiler run
time (secs)

0,06 0,05 0,11 0,06

back-end
compiler run 0,03
time (mins)

0,02 0,25 10,41

TABLE Il. PARCS STATE REDUCTION STATISTICS FOR THE MPEG TEST

in OIt is obvious from this diagram that the optimization can
achieve impressive results, especially for large designs such
as the MPEG model.

350
3001 |
250+ |
2001
150+
100+ =
501
0

O initial # of states

O optimised states

FIR dif.eq. RSA n.l. MPEG

Figure 25: State reduction after PARCS for the five tests

The backend compiler is produces RTL (V)HDL for both
the initial schedule (right before the PARCS optimizer is
applied) and the optimized (parallelized) schedule.

TABLE III. XILINX VIRTEX-5 IMPLEMENTATION STATISTICS OF MPEG

Initial schedule PARC.S State reduction
odule parallelized
states rate
states
MPEG st 88 56 36%
routine
MPEG 2nd 88 56 36%
routine
MPEG 3rd 37 25 32%
routine
MPEG top
routine (with 326 223 32%
embed. mem)
MPEG top
routine (with 462 343 26%
external mem)

MPEG 4th
MPEG 4th .
Are d speed . routine
R o1 routine ..
statistic forXilinx (unoptimised) optimized
P (PARCS)
Number of slices 3351 3087
Number of flip-flops 9503 9384
Number of LUTs 3626 3509
Number of MACs 111 111
(DSP48Es)
Number of 111 111
adders/subtractors
Number of 9 9
comparators
- . 9.911 ns 9.930 ns
Minimum clock period (10 ns constraint) | (10 ns constraint)
Number of FSM states 462 344
Number of bits of state 462
. 344
encoding
. Automatic Automatic
State encoding one-hot one-hot
Synthesis & Place & ~31 mins .
. ~25 mins
Route run-time
temperature Range: 0.000 to 85.000 Celsius
Core voltage Range: 0.950 to 1.050 Volts

Moreover, it is shown that the execution time of the
synthesizer does not exceed about 10 minutes even for the
most complex of these benchmarks. Let’s note here that the
hardware compilations were executed on a conventional
Pentium-4 platform running the MS-Windows-XP-SP2
operating system, and which however exhibited short run
times of the benchmark coprocessors.

The state reduction of the MPEG design after the initial
schedule is processed by the PARCS optimizer is shown in
Table II. Up to almost 40% improvement (“‘compression”) of
the initial schedule is observed using the PARCS optimizer.

The reduction in the number of FSM states before (initial
schedule) and after (PARCS schedule) optimization by the
backend compiler is shown graphically, for all the five tests,

182

All of the produced RTL modules were synthesized with
the Xilinx XST and Synopsys DC Ultra RTL synthesizers.
Due to lack of space in this paper, only the fourth (top-level)
routine of the MPEG benchmark Xilinx Synthesis and Place
& Route, as well as Synopsys RTL synthesis run statistics are
shown here, in III and IV. The XST and technology place and
route ran via the Xilinx Design Suite 10.1 and the design was
mapped on Xilinx Virtex5 XC5VLX330T, package FF1738,
speed -2 device. The Synopsys flow ran via the DC-ULTRA
version C-2009.06-SP3 and was mapped on TSMC 1.3 um
technology libraries.

Both Xilinx and Synopsys statistics refer to design
implementations that were compiled with the
massively-parallel architecture option. Therefore, even more
economic (in terms of area and used resources) figures could
be attained with the conventional FSM-+datapath

www.ijerm.com

International Journal of Engineering Research And Management (IJERM)
ISSN : 2349- 2058, Volume-01, Issue-06, September 2014

micro-architecture option.

It is remarkable that for both the initial and the optimized
schedule the area and resource figures don’t differ
dramatically. This is due to the nature and connectivity
features of the chosen RTL VHDL model coding style and
architecture that are followed in the design flow of the
presented design framework and hardware compiler toolset.

TABLE IV. SYNOPSYS DC-ULTRA WITH TSMC LIBRARIES RESULTS

Avrea and speed MPEG, 4th MPEG_’ 4th
Ny . routine
stati for routine ..
Synopsys (unoptimised) optimized
(PARCS)
Number of cells 3152 3186
Combinational area 154345.422880 148026.032483
N"“c‘"::’;:a""“a' 390809.611002 389015.961706
Total cell area 545155.033882 537041.994189
Eq. NAND2X1 gates ~54.515K gates ~53.704K gates
Run-time 30 mins 18 mins
Minimum clock 9-19 ns 9-26 ns
. (10 ns constraint (10 ns constraint with
period with 0.81 ns slack) 0.74 ns slack)

Abstract, algorithmic coding in standard programming
languages can be done in a fraction of the time required to
model and debug the application directly in cycle-accurate,
detailed (scheduled) RTL code, using any hardware
description language. This method which automatically
transforms whole ADA programs into VHDL RTL, along
with the coprocessor’s interfaces, is more efficient compared
even to RTL coding by very experienced hardware designers,
and particularly when the complexity of the hardware
machine increases usually over a dozen states.

CONCLUSION

The main contribution of this paper is a formal, high-level
hardware synthesis framework and a unified prototype
tool-chain, which is based on compiler-compiler and
logic-programming techniques, and UML as the starting
system-level specification input to the tool chain.

The prototype tools transform a number of arbitrary input
subprograms (at the moment coded in the ADA language) into
an equivalent number of functionally-equivalent RTL VHDL
hardware coprocessor descriptions. A very large number of
input program applications were run through the hardware
compiler, five of which were evaluated in this paper. In all
cases, the functionality of the produced hardware accelerators
matched that of the input subprograms. This was expected due
to the formal definition/implementation of the various phases
of'the hardware compiler, including the intermediate IPF form
and the logic rules of the backend phase.

Encouraging state-reduction rates of the PARCS
scheduler-optimizer were observed for five benchmarks in
this paper, which exceed 30% in some cases. Using its formal
flow, the prototype hardware compiler can be used to develop
complex systems in orders of magnitude shorter time and less
engineering effort, than that which are usually required using
conventional design approaches such as RTL coding or IP
encapsulation and schematic entry using custom libraries.

Future extensions of this work include the backed HDL

183

writer to produce RTL code in more hardware modeling
languages such as SystemC and cycle-accurate C, which are
currently under development. Another extension could be the
inclusion of more than 2 operand operations as well as
multi-cycle arithmetic unit modules.

Moreover, there is ongoing work to extend the IPF’s
semantics so that it can accommodate embedding of IP blocks
(such as floating-point units) into the compilation flow, and
enhance further the schedule optimizer algorithm for even
more reduced schedules. Compiler phase validation
techniques based on formal semantic such as RDF and XML
flows are investigated. Furthermore, the UML-based system
specification methods are being further studied and enhanced
and updated versions of our CubedC framework are under
development and expect to be published.

ACKNOWLEDGMENT

The student team: Giovanopoulou Georgia, Keskou
Vasiliki, and Ntafou Evaggelia, contributed with initial
development work, mainly on the WinTranslator UML
diagrams and generation of ADA code. They worked under
the guidance of the author of this paper.

REFERENCES

[1] M. Fowler,UML Distilled. A Brief Guide to the Standard Object
Modeling Language. Addison-Wesley Longman, 2000.

[2] G. Booch, RA. Maksimchuk, MW. Engle, BJ. Young, J. Conallen and
KA. Houston, Object-oriented analysis and design with applications.
USA: Addison-Wesley, 3 ed., 2007.

[31 RC. Martin, Agile software development: principles, patterns, and
practices. USA: Pearson Education, Inc, 2012.

[4] G. Martin, and W. Muller, (editors), UML for SOC Design. (research
review reference book) AA Dordrecht, The Netherlands: Springer,
2005.

[5]1 Intelligent Knowledge-Based Systems, Volume I: Knowledge-Based
Systems, Edited by Cornelius T. Leondes, Kluwer Academic
Publishers, USA, 2005.

[6] M. Dossis, "Intermediate Predicate Format for Design Automation
Tools", Journal of Next Generation Information Technology (JNIT),
vol. 1, no. 1, pp. 100-117, May 2010.

[7] R. Camposano, and W. Rosenstiel, “Synthesizing circuits from
behavioural descriptions”, IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., vol. 8, Number 2, pp. 171-180, Feb. 1989.

[8] R.Pellizzoni, and M. Caccamo, “Real-Time Management of Hardware
and Software Tasks for FPGA-based Embedded Systems”, IEEE
Trans. Computers, vol. 56, issue 12, pp. 1666-1680, Dec. 2007.

[91 A.E. Casavant, M.A. d'Abreu, M. Dragomirecky, D.A. Duff, J.R.
Jasica, M.J. Hartman, K.S. Hwang, and W.D. Smith, “A synthesis
environment for designing DSP systems”, IEEE Des. Test Comput.,
vol. 6, Number 2, pp. 35-44, Apr. 1989.

[10] 1. Auge, F. Petrot, F. Donnet, and P. Gomez, “Platform-based design
from parallel C specifications”, [EEE Trans. Comput.-Aided Des.
Integr. Circuits Syst., vol. 24, Number 12, pp. 1811-1826, Dec. 2005.

[11] M.C. Molina, R. Ruiz-Sautua, J.M. Mendias, and R. Hermida,
“Bitwise Scheduling to Balance the Computational Cost of Behavioral
Specifications”, IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 25, Number 1, pp. 31-46, Jan. 2006.

[12] R.A. Walker and S. Chaudhuri, “Introduction to the scheduling
problem”, IEEE Des. Test Comput., vol. 12, Number 2, pp. 60-69,
Summer 1995.

[13] A.A.. Kountouris, and C. Wolinski, “Efficient Scheduling of
Conditional Behaviors for High-Level Synthesis”, ACM Trans. on
Design Automation of Electronic Systems, vol. 7, Number 3, pp.
380412, Jul. 2002.

[14] P.G. Paulin, and J.P. Knight, “Force-Directed Scheduling for the
Behavioral Synthesis of ASIC’s”, IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst., vol. 8, Number 6, pp. 661-679, Jun. 1989.

[15] A.V. Aho, and J.D. Ullman, Principles of Compiler Design,
Addison-Wesley, 3rd Edition by M.A. Harisson, 1979.

www.ijerm.com

Custom Hardware Synthesis from UML

[16] J.P. Tremplay, and P.G. Sorenson, The Theory and Practice of
Compiler Writing, McGraw Hill, 1985.

[17] WM. Waite, and G. Goos, Compiler Construction, Springer-Verlag
Inc., New York, 1984.

[18] R. Hunter, Compilers: Their Design and Construction Using Pascal,
John Wiley & Sons Ltd., 1985.

[19] B.Lin, and S. Vercauteren, “Synthesis of Concurrent System Interface
Modules with Automatic Protocol Conversion Generation”, Proc. of
ACM ICCAD 1994, pp. 101-108, San Jose, CA, Nov 1994.

[20] S. Gupta, R. K. Gupta, N. D. Dutt, and A. Nicolau, “Coordinated
parallelizing compiler optimizations and high-level synthesis”, ACM
Trans. on Design Automation of Electronic Systems (TODAES), vol. 9,
Issue 4, pp 441-470, Oct. 2004.

[21] D. Gomez-Prado, Q. Ren, M. Ciesielski, J. Guillot, and E. Boutillon,
“Optimizing Data Flow Graphs to Minimize Hardware
Implementation”, [EEE Design, Automation and Test in Europe
Conference, DATE’09, pp. 117-122, April 2009.

[22] L Shin, S. Paik, and Y. Shin “Register Allocation for High-Level
Synthesis Using Dual Supply Voltages”, Proceedings of the DAC’09,
San Francisco, California, USA, pp. 937-942, July 26-31, 2009.

[23] C. Haubelt, M. Meredith, T. Schlichter, and J. Keinert
“SystemCoDesigner: Automatic Design Space Exploration and Rapid
Prototyping from Behavioral Models”, Proceedings of the DAC 2008,
Anaheim, California, USA, pp. 580-585, June 8-13, 2008.

[24] WinA&D products, Excel Software,
http://www.excelsoftware.com/wina&dproducts.html

[25] M. F. Dossis, “Intelligent Custom Block Generation”, Universal
Journal of Electrical and Electronic Engineering, Horizon Research
Publishing Corporation (HRPUB), vol. 2, no. 2, pp. 59-69, February
2014.

[26] U. Nilsson, and J. Maluszynski, Logic, Programming and Prolog,
John Wiley & Sons Ltd., 2nd Edition, 1995.

[27] D. August, et al., “UNISIM: An Open Simulation Environment and
Library for Complex Architecture Design and Collaborative
Development”, IEEE Computer Architecture Letters, vol. 6, issue 2,
pp. 45-48, Feb. 2007.

[28] B.Bruegge, and A. H. Dutoit, Object-Oriented Software Engineering:
Conquering Complex and Changing Systems, Upper Saddle River, NJ,
Prentice Hall, 2000

[29] M. Fowler, UML Distilled, Reading, Massachusetts, Addison Wesley,
2000

[30] D. Harel, Statecharts: A visual formalism for complex systems,
Science of Computer Programming: pp. 231-274, 1987

[31] IM. Jacobson, and Christerson, et al. Object-Oriented Software
Engineering: A Use Case Driven Approach, Wokingham, England,
Addison-Wesley, 1992

[32] B. Oestereich, Developing Software with UML: Object-Oriented
Analysis and Design in Practice, London, Person Education, 2001

[33] D. Rosenberg, and K. Scott, Use Case Driven Object Modeling with
UML: A Practical Approach, Reading, Massachusetts,
Addison-Wesley, 1999

[34] J. Rumbaugh, and L. Jacobson, et al., The Unified Modeling Language
Reference Manual, Boston, Addison Wesley.1999

[35] K. Scott, UML Explained, Boston, Massachusetts, Addison-Wesley,
2001

[36] M.F. Dossis, and D.E. Amanatidis, “Synthesizing Neural Nets into
Image Processing Hardware”, Journal of Pattern Recognition and
Intelligent Systems (PRIS), vol. 1, iss (vol.) 1, pp. 10-17, May 2013.

Available:

Michael F. Dossis has an Advanced Engineering Diploma from NTUA,
Athens, Greece and a Ph.D. in Electrical and Electronic Engineering from
the University of Bradford, UK. He is currently an Associate Professor of
Informatics Engineering with the Higher TEI of Western Macedonia,
Greece. He has been post-doctoral research and teaching staff with the
Universities of Bradford and Oxford. (both in UK). He has also long
industrial experience in design and development of multimillion-gate
ASICs, FPGAs and processor core designs at LSI Logic, ARM, Virata (now
Connexant) and Intracom Telecom (Greece).

During his 20-year career in industry and academia he has developed some
millions of lines of high-level program and computer description/simulation
code. His research interests include design automation, methodologies and
tools for the design of digital electronic systems, architectures of
application-specific integrated circuits, computer architecture, computer
languages and their compilers, high-level synthesis and hardware-software
codesign, formal design methods, applications of artificial intelligence,
embedded systems, custom processor and computer architectures, and
reconfigurable computing. He holds a number of international patents and

184

publications in Formal Methods for hardware and system design -
automation and he has developed high-level synthesis and ESL tools.

www.ijerm.com

