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Free Vibration Analysis of Thick Cylindrical
Composite Shells Using Higher Order Shear
Deformation Theory

MOHAMMAD ZANNON, MOHAMAD QATU

Abstract— This paper presents a free vibration analysis of
laminated cylindrical shells using higher order shear
deformation theory recently developed by Zannon et al.,
(2014). Equilibrium equations of motion, stress resultants
and strain displacement relations are developed using
Hamilton’s principles. These equations are based on the
theory of elasticity with terms truncated to a third order
(hence, third order theory). The equations can be used to
characterize the system under various boundary
conditions. For the present analysis, the boundary
conditions considered are simply supported with a
cross-ply lamination sequence. Here, we specifically
developed mathematical formulation that -considers
transverse normal stress, shear deformation and rotary
inertia for the shell system. The free vibrational analysis
using the third -order shears deformation shell theory led
to a system of generalized eigenvalue problem. This
eigenvalue problem is then solved numerically using
commercial Matlab software to obtain the free undamped
vibrational frequencies. Since the higher frequencies are
often damped, the first five natural frequency parameters
are reported and compared with previously published
first order approximation and three dimensional finite
element analyses.

Index Terms— Free Vibration, Hamilton Principles,
Thick Shell, Natural Frequency, Third order shear
deformation, Cross-ply, Eigenvalue

I. INTRODUCTION

The Literature on shell vibrations is vast. Hundreds of papers
were published on free vibration especially for cylindrical
shells (Reddy, 2004; Reissner, 1945; Librescu & Frederick,
1989; Love, 1892; Leissa, 1993; Timoshenko & Woinowsky
1959; Koiter, 1969). Various engineering applications and
developments are underway for laminated composite shells.
For example, aerospace industry, material technology,
marine, petroleum, construction and automotive engineering
(Qatu et al., 2013; Qatu, 2004). The vibration of thick shells
has conventionally been solved using the 1% order shear
deformation shell theory (Qatu et al., 2013; Asadia et al.,
2012; Chenetal., 1997; Love, 1892). Often three dimensional
theory of elasticity is used for solving theories of shell

Manuscript received Oct 06, 2014

MOHAMMAD ZANNON, Department of Mathematics, Tafila
Technical University, Tafila, Jordan

MOHAMAD QATU, School of Engineering and Technology,
Central Michigan University, Mount Pleasant

42

structures. Thus, three dimensional analyses of shells is
considered to be the most accurate, but is complex and time
consuming when the shell system has many graded layers due
to the incorporation of composite materials. Even for today’s
availability of computational facilities, three dimensional
finite element analyses for most practical problems are not
feasible. Lately, many shell structures are making use of the
functionality of composite materials, which are often energy
efficient and durable. Composite shells often consist of many
layers of varied strength materials; therefore, each layer has
different material characteristics (Naghdi & Berry, 1964;
Soldatos, 1999; Noor et al., 1996; Koiter, 1969).

A comprehensive summary and discussion of shell theories
using first order deformation and various mode shape
characteristics has been done by researches (Leissa, 1993;
Reissner, 1945; Kurylov & Amabili 2010; Qatu 2002;
Amabili & Paidoussis 2003) over the past 40 years. The
difficulties of composite materials make shell structure hard
to explore three dimensional theory of elasticity, which is
important for the development of various shell and plate
theories. Even though, researchers have done an extensive
study on various thin and thick shell vibrations using lower
order approximation in displacements, which is one of
drawback of many practical applications. Zannon et. al.
(2014) remediated some of these drawbacks by incorporating
higher order approximations and a non-zero mid-surface
displacement in the shell theory. However, any new theory in
vibrational analysis has to establish the basic fundamentals
concerning free vibrations before we proceed to further
analyses. Different plate theories were classified into classical
theories; two of the most important ones are first order shear
deformation theories and higher-order shear deformation
theories based on the thickness ratio. In the case of thick shell
theory, the effect of the thickness of shells and the depth ratio
of shells should not be neglected (Librescu & Frederick,
1989; Leissa, 1993; Timoshenko & Woinowsky 1959;
Zannon et al., 2014; Qatu, 2010; Asadi et al., 2012; Qatu et
al., 2013). The applications of shells vibration analysis are
very crucial for structural design. Furthermore, experimental
design of such structures can be rather cumbersome and
costly. Therefore, theoretical model becomes viable and
should elucidate various modes of vibrations during the
impact period. Hence, composite shell theories are used
widely in many shell structural applications.

The characteristic properties of vibrational behavior of
composite laminated shells are used to understand the
stability criteria of the system as a whole. Over the past years
many researchers have analyzed various aspects of vibrations
analysis of the system.
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A stretching and shearing stiffness parameters

A stlffness parameters

B coupling stiffness parameters

B stlﬂness parameters

D, s

ij v’

D.,D,
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E,F,L,E, E, E,

G272 T, g ?

D bending and twisting stiffness parameters

D stlffness parameters

L higher order stiffness parameters

i 2 g2, T T T,

(a, B,z)shell coordinates

I rotary inertia

p" mass density of kthlayer
0,,0,,0, normal siress
0,p:04.50,. shear stress
€,+E5,€. normal strains

Yops Vs>V g Shear strains
Q.j.(“, Ql./. elastic stiffness parameters for layer k

0,,0, transverse shear force

(1 1 2
m ) m;>’m(>

q..9,,9, distributed forces

m(z) distributed couples

A, B Lame' parameters

@,>g higher orderterms rotation of transverse normal
R,, Ry principle radii of curvature
K,,K, curvaturevalues of theca and [ curves

K5 IWISt curvature

For example, Qatu (1994) studied the vibration of
symmetrically laminated composite shells with different
boundary conditions. Also, Noor (1990) and Leissa (1993)
presented the solution and the vibrational analysis for
symmetrically laminated thin cantilevered composite shells.
Furthermore, Qatu (1994) analyzed the free vibrations of
composite laminated thin shells. These researchers have
utilized the classical shell theory in their analysis. Chen et al.
(1997) studied the vibration of symmetrically laminated
composite shells using the higher order shear deformation
theory. However, not many researchers have undertaken the
concepts of isotropic unsymmetrical laminated composite
shells of free, undamped vibration problem (Aydo gdu &
Timarci, 2007; Khare & Rode, 2005). Furthermore, there are
some studies on unsymmetrical cross ply shells with very
limited boundary conditions (Lee & Reddy, 2004; Zhou et al.,
2002; Asadi et al., 2012; Naghdi & Berry, 1964; Reddy,
2004).

In order to fully understand the various vibrational
characteristics of the composite cross- ply thick shell
dynamics, the theory of first order shear deformation has to be
modified. Towards this attempt, this part of the research has
undertaken by incorporating the thickness-depth ratio of the
thick shell. Therefore, basic equations derived for shells and
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the respective solution procedures often encounters

z
difficulties due to the term (1 + E) in both the stress resultant

and strain displacement equations, especially for thick shell.
However, some researchers have developed higher order shell

z
theories by neglecting the (1+E) term (Reddy, 2004;

Librescu & Frederick, 1989; Koiter, 1969; Noor et al., 1996),
which is not applicable for thick shell structures. More
specifically, Zannon et.al (2014) incorporated this term in the
mathematical formulation of a third-order shear deformation
shell thick theory by Zannon (TSDTZ) without violating the
classical shell theory assumptions. The solution of the
TSDTZ is used to obtain the free vibrational characteristics of
composite thick shells with specified boundary conditions of
simply supported cross-ply laminates. The computational
results obtained from TSDTZ are encouraging. It showed that
TSDTZ improved the results in comparison to the first order
shear deformation theory suggested by several other
researchers (Asadi et al., 2012; Qatu et al., 2012; Asadi &
Qatu, 2012; Qatu, 1994, 2004).

II. THEORIES AND FORMULATION

Basic equations of TSDTZ have been developed Zannon et
al., (2014) to study the free vibrational analysis of simply
supported cross-ply cylindrical shell. The analysis of shell
type elastic body is based on three fundamental principles
such as equilibrium, continuity (displacement) and
constitutive relationship (stress-strain).

We used Hamilton’s principle to include various physical
mechanisms such as extensional motion (stress, strain,
transvers shear), and rotatory inertia of complex shells which
undergo resonance (Deana & Werbya, 1992; Naghdi & Berry,
1964). The Hamilton’s principle (Khare & Rode, 2005; Qatu,
2004; Zannon et al., 2014) for the equations of motion of a
body with surface S between two arbitrary time intervals ty
and t; requires that

5[F(K+W -U)dt =0 o

where U is the shell strain energy, K the kinetic energy and

W the external work by the system are given in appendix A.
However, the approximation of displacement components
using the third-order shear deformation shell theory can be
written as Zannon et al., (2014)

u((x,ﬂ,z) 2”0(05,.3)"'21//(1(0"/3)"'23 (pa (Ol,ﬂ)
va,B,z)=v,(a,B)+z l//ﬂ(O!,ﬁ)+23 (pﬂ(a,ﬁ) .22

W(OC,ﬂ,Z)ZWO(O(,ﬁ)-}'Zl//Z(OC,ﬂ).

Where /1 is the shell thickness
and — <z < E U, ,V, , W, are midsurface displacements

of the shell andy/ , , B , ; are midsurface rotations and

Qg P B are higher order terms rotation of transverse

normal. The corresponding strain-displacement equations are
Zannon et al., (2014):
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After integrating the stress over the thickness of shell by incorporating the term (1 + E) , we get the following moment and

force resultants:

Na h/2 O-a

Nap :%j/z S [H%{B}IZ’

Oy s (2.5)
NB h/2 GB

Nga (=1 1%ap [”%%ajdz

p °Bz
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The bending and twisting moment resultants defined as Zannon et al., (2014):
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Where PO(CI) R PO(CZ ), Pb” and P(ﬁ2 ) are higher order shear resultants terms. The stress resultant or the stiffness matrices obtained

(2.6)

from the above equations are given in Appendix B. Substituting these stiffness parameters in the Hamilton equation (2.1), and
simplifying the resulting equations, we get the following equations of

0

oa oa

0
— (BN
oa

—(BQ )+

a 1
—(BM,) -
oa

0 m
—(AM ") -
op

9 )
—(BP, )+
(04

0
—(BM;Z)) _
oa

motion:

—(AM‘”)
op

oa

0

OB 04 0 AB AB
—(BN,)-—N,+—N_,+— (AN, )+—0,+— 0, + 4Bq,
op op R, R

‘A
YV
op

6 (1) Mrz
—(4F, ) - AB(N_+ + +
B ° R

0B .,
M,
o

A M(Z)

04

+ 0 (2) (1)
—(AM )~ (24BP!
op

aff

e

B afp

0
Maﬂ

0 m. OB AB
(BM Y+—M, —ABQO, +—
oa R

N VA0
B

N,+N,, —
R—) +ABq, = AB(I,

(AM‘”) ABO, +AB
B R

ap

= AB(Iu +12wa)

OB 04 0 AB AB
)T — N,y ——N, +—(4N))+—0,+—0, +4Bq,
oo B op R R

B

= AB(Iv,+Ly,).

ap

= AB(Tu, +1y,).

af
= AB(Iv, + Ty ).

(1) (9]
M M

R

« B

0 . AB ., AB
P Y

ap

Where the rotary inertia is given as Zannon et al., (2014):
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The boundary conditions for S, are given below, where Q is a constant
either Noo ~No = 0 or u, =0
either NOaﬂ - Naﬁ =0 or v, =0
either QOa -0y =0 or w,=0
either M(()”a -My =0 or Vo =0
. ) . 1) _ _ (29)
either MOa/B’ Maﬂ =0 or y/ﬁ =0
either By —Fy =0 or v,=0
either M&)x -My =0 or ®g =0
. @ g —
either MOaﬁ Maﬁ_o or (pﬁ—O

Similar boundary conditions are obtained by taking 8 , a constant.

3. EXACT SOLUTIONS
Consider the following Figure 1, which is a section of a cylindrical shell having in-plane axis, o in the direction of the x-axis of
shell, B, circumferential in-plane along the y-axis, which is normal to the middle-plane axis z and radius R.

iy
e S !

Fig.1. Coordinates of a cylindrical shell (Qatu, 1994)
Let us consider the cylindrical laminated shell as shown in figure 1with length % =1 under load per unit area, / is the
thickness of the shell. If the load is orthogonal to the surface, then Lame' parameters (elastic and shear modulus) of middle
surface A=B =1 and yRa = %Q 5 =0, R B are substituted in equations (2.5-2.8) to formulate the cylindrical shell
(04

equations for TSDTZ. Therefore, the resulting equation (2.4) for the displacement mid surface cylindrical thick shells is
ou, o, W, ov,

=% =0 Mo =%
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Thus the equations of motion (7) for the cylindrical shell reduces
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The above cylindrical shell equation has no exact solution having general boundary conditions. Using the following Fourier
series expansion for the midsurface displacements (Oth order) field equation (3.3) is used to approximate the solution of the
above partial differential equations (3.2):

u, =Y u,  Cos(4a)Sin(B B)e ",

m,n=1

v, = Z Yo.m Sin(A*a)Cos(B*ﬂ)e_iwt,

m,n=1

0,mn

w, = Z Wo.mn Sin(A'a) Sin(B” ﬁ)e_lwt,

m,n=1

Vo = 2 Womn Cos(A'a) Sin(B'B)e”®!

m,n=1

] (3.3)
VE=2Xvg,, . Sin(A'a)Cos(B'B) e,
Wy = Z Y 2 Sin(A') Sin(B'ye !,
by = i Gt mn Cos(A'a) Sin(B'B) e,
bg = z b, . Sin(A'at) Cos(B B)e "
. mrim B nrmw . . . . . .
Where 4" =——,B = 7 inwhich @ and b are the dimensions of the mid-shell along the @ and f3 -axes, respectively.
a

For the free vibration system has no external force on the structure and is freely vibrating. Substituting these equations (3.3) into
the Partial differential equations of motion (3.2) yields a set of eight homogenous algebraic systems in terms of its respective

components. By collecting the coefficients of the system and by taking the external force vector { f } as zero, the resulting

equation reduces to an eigenvalue problem. Therefore, the resulting equilibrium equation of motion under free vibration system
is written in the following matrix form

{[L]-A[M]}{A} = {0}. (3.4)
Where A = @”, o is the circular frequency of vibration, {A} is the unknown displacement vector. The dynamic shell system

stiffness parameters Lij and structure mass matrices M jj are given in appendix C.
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4. NUMERICAL RESULTS AND DISCUSSION
The above equation (3.4) in the matrix form is solved using MATLAB commercial code. This code is specifically modified for
free vibration problems of simply supported cross-ply laminated composite shells. A standard MATLAB routine is used to find
the eigenvalues of the matrices. Moreover, the eigenvalues are determined numerically because the stiffness matrix elements

contain transcendental functions. The solution is also valid for cylindrical shells having principle radii R, = Raﬁ = 0. For the
numerical computation we compared the results with the orthotropic material properties of the cylindrical shells having
length-to-arc ratio of one unit (i.e.@/b=1), and the Poisson ratio of 0.25. The shear correction factors ( K ) for both

directions are taken as 5/6. The natural frequency, extensional, bending and coupling stiffness parameters for free vibrations are
calculated using MATLAB algorithm for laminated composite cylindrical thick shells.

The first five non-dimensional natural frequency parameters ({2, ) has been calculated for two-ply unsymmetrical [90/0] shells

and three-ply symmetric [0/90/0] laminated orthotropic composite cylindrical shells for fixed thickness ratio (@ / £ =10) and

various values of curvature (& / R ) ratios by third order shear deformation theory. The results obtained by TSDTZ are then
compared with earlier available results first order shear deformation theory by Qatu (FSDTQ), and three dimensional elasticity
from finite element method (FEM). This supports us to evaluate the validity of the present TSDTZ theory. Moreover the results
obtained by the present method are in good agreement with the existing theory and given in Tables 1-5.

Table 1 and Table 2 show the comparison of present results and those of existing literatures (Asadi et al., 2012; Qatu et al.,
2010) for the non-dimensional natural frequency parameters (€),).

TABLE 1

Comparison of first five non-dimensional natural frequency parameters €2 | = w;a '\ PE,/h% of 2-ply unsymmetrical
[90/ 0] orthotropic cylindrical shells

4 =1, K =%, B =25 O 05, O 202, G, =G, v, =025, 4, =10

a
/ Method
R etho Q, Q, Q, Q, Q.

FSDTQ (Asadi et 13.771 21.037 29.574 31.200 38.073
al., 2012)

2
TSDTZ (Present) 13.770 21.039 29.587 31.222 37.981
3D (Asadi et al., 13.772 21.040 29.639 31.411 38.266
2012; Qatu et al.,
2010)
FSDTQ (Asadi et 10.666 21.705 24.090 30.368 38.722
al., 2012)

1
TSDTZ (Present) 10.671 21.756 24.117 30.430 38.713
3D (Asadi et al., 10.686 21.767 24.191 30.614 38.896
2012; Qatu et al.,
2010)
FSDTQ (Asadi et 7.5918 15.284 15.310 20.300 24.073
al., 2012)

0.5
TSDTZ (Present) 7.6076 15.322 15.359 20.423 24.157
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3D (Asadi et al., 7.6534 15.437 15.473 20.645 24.364
2012; Qatu et al.,
2010)

TABLE 2
Comparison of first five Non-dimensional natural frequency parameters Qi = a)l-az \ PE./h? of 3-ply

symmetric[0/ 90/ 0] orthotropic cylindrical shells

@, =1, k=5, B =25, O 05, O =02, G, =G, v, =025, 9,=10

a
/ Method
R etho Q, Q, Q, Q, Q,

FSDTQ (Asadi et 8.6309 13.581 17.878 20.738 20.976
al., 2012)

0.5
TSDTZ (Present) 8.3231 13.387 17.399 20.348 20.894
3D (Asadi et al., 8.0095 13.192 16.905 19.949 20.811
2012; Qatu et al.,
2010)
FSDTQ (Asadi et 13.187 18.524 30.564 32.232 34.523
al., 2012)

1
TSDTZ (Present) 12.891 18.267 30.147 31.224 33.292
3D (Asadi et al., 12.590 18.005 29.732 30.189 32.037
2012; Qatu et al.,
2010)
FSDTQ (Asadi et 15.250 17.989 29.491 34.795 34913
al., 2012)

2
TSDTZ (Present) 15.040 17.732 29.290 33.665 33.998
3D (Asadi et al., 14.840 17.468 29.094 32.464 33.046
2012; Qatu et al.,
2010)

In order to validate the third order shear deformation theory, the extensional (AU) , bending (Dy) and coupling (By)

stiffness parameters (Zannon et. al., 2014; Qatu, 1994) are given in Table 3-5 using the Matlab algorithm for laminated
composite cylindrical thick shells. It is then compared with the first order shear deformation theory from the literature. There are
small discrepancies are seen in the tables 3-5, which is due to the third order shear deformation and the tolerance limitations.
Tables 3, 4 and 5 show the extensional stress, coupling, and bending stiffness parameters for [0/90] laminated cylindrical thick
shells. While comparing the various stiffness parameters with the existing literature and the present theory, we see that the
TSDTZ approximation is more accurate in in comparison with first order shear deformation theory (see Tables1-5 for details).
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TABLE 3
Non-dimensional extensional stiffness matrix for [0/ 90] laminated cylindrical thick shells
B 15, % _05, % _05,0,=03. %=1, C -2, 2 _o Ba_o 2_y9 p=1.
E, E, E, b Ry Ryp Ry h
Plate FSDTQ TSDTZ (Present) TSDTZ (Present)
Approx. Qatu, (1994) Exact Integration Third order
A .V VA Y Ay
E,a E,a E,a Eya E, a E,a E,a
(LD 0.804829 | 0.76963 | NA 0.71680 NA 0.71806 NA
4
2,2) 0.804829 | NA 0.772156 | NA 0.7696 | NA 0.7706
2
(6,6) | 0.050000 | 0.04999 | 0.050167 | 0.04750 0.0525 | 0.04758 0.05258
9 0
TABLE 4
Non-dimensional coupling stiffness matrix for [0/90] laminated cylindrical thick shells
R,
L 15,82 g5 %5 _05,0,-03, %21, % 2, 4 _o Ra_og 2_10 51
E, E, E, b Rg R,p Rg h
Plate FSDTQ TSDTZ (Present) TSDTZ (Present)
Approx. Qatu, (1994) Exact Integration Third order
(i, )) B; By By By By By By
2 2 2 2 2 2 2
E,a Esa E;a Eya E,a Eya Eya
11 -1.760563 | -1.62648 | NA -1.6348 NA -1.6348 NA
8
2,2) 1.760563 NA 1.634540 | NA 1.6264 NA 1.6264
(6,6) 0 0.008329 | -0.00837 | 0.007639 -0.007945 | 0.008218 -0.008257
9
TABLE 5
Non-dimensional bending stiffness matrix for [0/90] laminated cylindrical thick shells
L 15,82 05 %5 _05,0,-03, %=1, —2, 2 _o, Ra_o 2_10,p=1
E, E, E, b Rg R,5 R h
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Plate Approx. | FSDTQ TSDTZ (Present) TSDTZ (Present)
Qatu, (1994) Exact Integration Third order
D;;
.o Yy — A — A — N
G| Jea | P/ Dy by, Dy Dy, Dy
2 2 2 2 2 2 2
E,a E,a E,a E,a E,a E,a
1,0 0.670691 0.62417 NA 0.6707 NA 0.67069 NA
8
(2,2) | 0.697091 NA 0.630454 NA 0.67069 NA 0.67069
(6,6) | 0.041667 0.04289 | 0.041918 | 0.04165 0.04166 0.04167 0.04167
2
CONCLUSIONS

This paper presented a third order shear deformation theory for laminated thick shells by Zannon et al. (TSDTZ) and solved for
free vibrational characteristics of cylindrical thick shells with simply supported boundary conditions and cross-ply laminates.
The present results are compared with the 3D theory of elasticity and first order shear deformation theory available in the
literature. The natural frequencies of the first five parameters for the cylindrical shells using TSDTZ are in good agreement with
the 3D theory of elasticity. The results obtained here show that the present theory (TSDTZ) is more accurate than the (FSDTQ)
when compared to three dimensional theory of elasticity. Also, TSDTZ offers many other advantages in the accurate
representations such as extensional , coupling, and stress stiffness parameters, as shown in Tables 3 to 5 and is mainly due to

the inclusion of the term (1 + R ) in the mathematical formulation of third order shear deformation theory. We anticipate that

this theory would be useful for many researchers in the development of complex geometry of shell deformation theory for
further future applications.

APPENDIX A
The total shell strain energy U can be written in terms of the midsurface strains and stress resultants and is defined as
(Zannon et al., 2014)

1
U :Eg{aaga +Gﬂ8ﬁ +0,&, +Gaﬂ8aﬂ +0uzYaz +Gﬂzyﬂz}dV

1 () @) <2>
_EH{Nana +N,BSO,B +Nz¢, +N(X,BSO(X,B +N/3a80/3a + Mgy + Mg

(1) (1) (2) (2)+M(1 (1) M(2) (2) (1) (1) (2) (2)

Mprg+Mprp +Mopkop +MopFap ™Mo po M g o + 9ot 002

+0g70p, +Fa/G" + Fy'G” + PRE" + Pg'E""} ABda.d B

The total external work W of the thick shell can be written as (Zannon et al., 2014):
W= j J' {9, + qﬁv(J +qnw, +m&)G(” +m&)G(2) +may s
ap

+mEY +mPE®} ABda dp.

The kinetic energy T of the thick shell can be written as (Zannon et al., 2014):
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= 2+1/2+w2}dV

{u

1
r==
v

1 2,2 BRI
ch[!g {(ug™ +vy~ +ny ){11+12(RQ+RB) RaRBJ

2,2 11 s
+W +Wz)[13 +14(g+§)+RaRﬁJ

1 1 Y
+2(u0l//a +V0l//ﬂ +W01[/Z){12 +13(E+—)+ 4 ]

2 23 7, 4 I L 4
+ (uo(pa+v0(pﬁ +V’ﬂ) 4+ 5(a+—)+

7
+2(Pa ¥ o +(PB1//ﬁ {15-0-16( +L)+ 7 )

I
+(¢§+¢l23 {17+18(1 R J}Adedadﬁ

~ APPENDIXB_ L L ~

N, | |4, 4, A4, 4, A, B, B, B, B, D, D, D, Dl e, ]
N, 4, A, A, 4, 4, B, B, B, B, D, D, D, Dl &,
N A4, A, A, A, A, B, B, B, B, D, D, D, D,]|| -:
Ny 4, A, A, A, A, B, B, B, B, D, D, D, Dg||%u
N | |4, A, A, A, A, B, B, B, B, D, D, D, D, ||
M\ |B B, B, B, B, D, D, D, D, E, E, E, E,| &
M \='p B, B, B, B, D, D, D, D, E, E, E, E,| %
My| |\B, B, B, B, B, D, D, D, D, E, E, E, E,| ¥u
My | |\, B, B, B, B, D, D, D, D, E, E, E, E,| ®u
M\ \p, b, D, D, D, E, E, E, E, FE, F, FE, F,| .
M7\ \p, b, b, D, D, E, E, E, E, F, E, FE, FE, | %
My | |\p, b, b, D, D, E, E, E, E, E, F, F, F,| s
mg| \p, b, b, D, D, E, E, E, E, F, FE, F, F,|*u

Qa ASS A45 BSS B45 D55 D45 }/Oa

Qﬁ A45 A44 B45 B44 D45 D44 }/Oﬁz

a(l) — BSS B45 DSS D45 E55 E45 G( !

Pﬁ( ! B45 é44 D45 b44 E45 E44 E( )

})0!(2) 55 D45 ESS E45 F;S EtS G(Z)

_Pﬂ(2) _ _D45 A44 45 A44 FZ&S A44 _ _E(Z) i

Where Al'j’Bij’Dl] i l] AU, > l], U’ l] AU, i D] E] and F~] are given in Zannon et al., (2014)
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APPENDIX C
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The mass parameters M ; for the shell is given by Zannon et al., (2014)
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