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Abstract— Distributed arithmetic (DA)-based computation
is popular for its potential for efficient memory-based
implementation of finite impulse response (FIR) filter where the
filter outputs are computed as inner-product of input-sample
vectors and filter-coefficient vector. In this paper, however, we
show that the look-up-table (LUT)-multiplier-based approach,
where the memory elements store all the possible values of
products of the filter coefficients could be an area-efficient
alternative to DA-based design of FIR filter with the same
throughput of implementation. By operand and inner-product
decompositions, respectively, we have designed the conventional
LUT-multiplier-based and DA-based structures for FIR filter of
equivalent throughput, where the LUT-multiplier-based design
involves nearly the same memory and the same number of
adders, and less number of input register at the cost of slightly
higher adder-widths than the other. Moreover, we present two
new approaches to LUT-based multiplication, which could be
used to reduce the memory size to half of the conventional
LUT-based multiplication. Besides, we present a modified
transposed form FIR filter, where a single segmented
memory-core with only one pair of decoders are used to
minimize the combinational area. The proposed LUT-based FIR
filter is found to involve nearly half the memory-space and 1/
Ntimes the complexity of decoders and input-registers, at the
cost of marginal increase in the width of the adders, and
additional ~(4N+W)AND-OR-INVERT gates and
~(2N+W)NOR gates. We have synthesized the DA-based design
and LUT- multiplier based design of 16-tap FIR filters by
Synopsys Design Compiler using TSMC 90 nm library, and find
that the proposed LUT-multiplier- based design involves nearly
15% less area than the DA-based design for the same
throughput and lower latency of implementation.

Index Terms— Digital signal processing (DSP) chip,
distributed arithmetic, FIR filter, LUT-based computing,
memory-based computing, VLSI

I. INTRODUCTION

FINITE-IMPULSE response (FIR) digital filter is widely
used as a basic tool in various signal processing and
image processing applications [1]. The order of an FIR filter
primarily determines the width of the transition-band, such
that the higher the filter order, the sharper is the transition
between a pass-band and adjacent stop-band. Many
applications in digital communication (channel equalization,
frequency channelization), speech processing (adaptive noise
cancelation), seismic signal processing (noise elimination),
and several other areas of signal processing require large
order FIR filters [2], [3]. Since the number of
multiply-accumulate (MAC) operations required.
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Fig. 1.Trend of transistor density in logic elements and
SRAM.

per filter output increases linearly with the filter order,
real-time implementation of these filters of large orders is a
challengingtask. Several attempts have, therefore, been made
and continuedto develop low-complexity dedicated VLSI
systems for thesefilters [4]-[7].

As the scaling in silicon devices has progressed over the last
four decades, semiconductor memory has become cheaper,
faster and more power-efficient. According to the projections
of the international technology roadmap for semiconductors
(ITRS) [8], embedded memories will continue to have
dominating presence in the system-on-chip (SoC), which may
exceed 90% of total SoC content. It has also been found that
the transistor packing density of SRAM is not only high, but
also increasing much faster than the transistor density of logic
devices (Fig. 1). According to the requirement of different
application environments, memory technology has been
advanced in a wide and diverse manner. Radiation hardened
memories for space applications, wide temperature memories
for automotive, high reliability memories for biomedical
instrumentation, low power memories for consumer products,
and high-speed memories for multimedia applications are
under continued development process to take care of the
special needs [9], [10]. Interestingly also, the concept of
memory, only as a standalone subsystem in a general purpose
machine is no longer valid, since embedded memories are
integrated as part within the processor chip to derive much
higher bandwidth between a processing unit and a memory
macro with much lower power- consumption [11]. To achieve
overall enhancement in performance of computing systems
and to minimize the bandwidth requirement, access-delay and
power dissipation, either the processor has been moved to
memory or the memory has been moved to processor in order
to place the computing-logic and memory elements at closest
proximity to each other [12]. In addition to that, memory
elements have also been used either as a complete arithmetic
circuit or a part of that in various application specific
platforms.

In this paper, we use the phrase “memory-based structures” or
“memory-based systems” for those systems where

www.ijerm.com



Design and Realization of Look-up-Table, FIR Digital Filter

memory elements like RAM or ROM is used either as a part
or whole of an arithmetic unit [13]. Memory-based structures
are more regular compared with the multiply-accumulate
structures; and have many other advantages, e.g., greater
potential  for  high-throughput and reduced-latency
implementation, (since the memory-access-time is much
shorter than the usual multiplication-time) and are expected to
have less dynamic power consumption due to less switching
activities for memory-read operations compared to the
conventional multipliers. Memory-based structures are
well-suited for many digital signal processing (DSP)
algorithms, which involve multiplication with a fixed set of
coefficients. Several architectures have been reported in the
literature for memory-based implementation of discrete
sinusoidal transforms and digital filters for DSP applications
[13]-[28]. There are two basic variants of memory-based
techniques. One of them is based on distributed arithmetic
(DA) for inner product computation [14]-[20], [22]-[24] and
the other is based on the computation of multiplication by
look-up-table (LUT) [24]—-[28]. In the LUT-multiplier-based
approach, multiplications of input values with a
fixed-coefficient are performed by an LUT consisting of all
possible pre-computed product values corresponding to all
possible values of input multiplicand, while in the DA-based
approach, an LUT is used to store all possible values of
inner-products of a fixed -point vector with any possible
-point bit-vector. If the inner-products are implemented in a
straight-forward way, the memory-size of LUT-multiplier
based 76 implementation increases exponentially with the
wordlengthof input values, while that of the DA-based
approach increasesexponentially with the
inner-product-length. Attemptshave been made to reduce the
memory-space in DA-based architecturesusing offset binary
coding (OBC) [14], [29], andgroup distributed technique
[20]. A decomposition scheme issuggested in a recent paper
[22] for reducing the memory-size ofDA-based
implementation of FIR filter. But, it is observed thatthe
reduction of memory-size achieved by such decompositions is
accompanied by increase in latency as well as the number
ofadders and latches.Significant work has been done on
efficient DA-basedcomputation of sinusoidal transforms and
filters. Various algorithm-architecture co-designs have also
been reported forefficient LUT-multiplier-based
implementation of sinusoidaltransforms [24]-[28]. In an early
paper, Lee et al. [13] hadintroduced a memory-based
structure for the LUT-multiplier-based implementation of
FIR filter. But, we do not findany further work to improve the
efficiency of LUT-multiplier-based implementation of FIR
filter. In this paper, we aimat presenting two new approaches
for  designing the LUT  forLUT-multiplier-based
implementation, where the memory-size

is reduced to nearly half of the conventional approach.
Besides,we find that instead of direct-form realization,
transposed formrealization of FIR filter is more efficient for
the LUT-multiplier-based implementation. In the transposed
form, a singlesegmented-memory core could be used instead
of separatememory modules for individual multiplications in
order toavoid the use of individual decoders for each of those
separatemodules.

The remainder of the paper is organized as follows. In Section
I, we have presented the proposed design of LUT for
memory-based multiplication. In Section III, we have
described
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Fig. 2.Conventional Memory-Based Multiplier.

TABLE I
LUT WORDS AND PRODUCT VALUES FOR INPUT
WORD LENGTH L=4

address word stored input product #of | control
dodydg | symbol | value |wzxexiiag| value shifts | s1 S0
0001 A 0 00
1 1
0oo | po A |0010[2txa] 1 01
0100 | 22x A 2 10
1000 ] 22x4 | 3 11
0011 34 0 00
001 Pl 34 0110 | 21 %34 1 01
1100 | 22x34] 2 10
gig | o8 sA | 0101 54 0 00
1010 | 2! x54 01
011 P cq |0111] 74 0 0o
1110 | 20x74 | 1 01
F100 | P4 | 94 [1o01] 94 [ o [ oo |
L1o1 | P5s JmuaJ1o11] na [ o Joo ]
L110] pe [ 13a]1101] 13 [ o J oo ]
Fi1r | pr Jasal1111] 15a [ o [ oo |

sp and s are control bits of the logarithmic barrel-shifter.

the proposed structure for LUT-multiplier-based
implementation of FIR filter, and a DA-based filter of the
same throughput rate is derived in Section IV. The area and
time-complexity of the LUT-multiplier-based designs and
DA-based designs of FIR filter are evaluated and compared in
Section V. Conclusions are presented in Section V1.

II. LUT DESIGN FOR MEMORY-BASED
MULTIPLICATION

The basic principle of memory-based multiplication is
depicted in Fig. 2. Let A be a fixed coefficient and X be an
input word to be multiplied withA . If we assume X to be an
unsigned binary number of word-length L , there can be 2"
possible values of X, and accordingly, there can be 2"
possible values of product C=A.X . Therefore, for the
conventional implementation of memory-based
multiplication [24], a memory unit of words is required to be
used as look-up-table consisting of pre-computed product
values corresponding to all possible values of X . The
product-word (A.X;) , for 0<X;<2"-1, is stored at the memory
location whose address is the same as the binary value of ,
such that if — L bit binary value of is used as address for the
memory-unit, then the corresponding product value is
read-out from the memory. Although 2"possible values of X
correspond to L possible values of C=A.X , recently we have
shown that only 2%2 words corresponding to the odd
multiples of A may only be stored in the LUT [30].
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Fig. 3. Proposed LUT design for multiplication of W -bit fixed coefficient, A and 4-bit input operand, X = X3 X, X; Xo. The
proposed LUT-based multiplier. (b) The 4-to-3 bits input encoder. (c¢) Control circuit. (d) Two-stage logarithmic barrel-shifter
for W = 4. (e) Structure of the NOR-cell.

One of the possible product words is zero, while all the rest
(2%/2)-1 are even multiples of which could be derived by
left-shift operations of one of the odd multiples of A. We
illustrate this in Table I for L=4. At eight memory locations,
eight odd multiples A(2i+1) are stored P; as for
i=0,1,2,3,4,5,6,7 . The even multiples 2A, 4Aand, 8A are
derived by left-shift operations of A . Similarly,6A and 12A
are derived by left-shifting 3A , while 10A and 14A are
derived by left-shifting SA and 7A, respectively. The address
X=(0 0 0 0) corresponds to (A.x)=0 , which can be obtained
by resetting the LUT output. For an input multiplicand of
word-size A similarly, only (2%/2) odd multiple values need to
be stored in the memory-core of the LUT, while the other
(2%/2) -1 non-zero values could be derived by left-shift
operations of the stored values. Based on the above, an LUT
for the multiplication of an L -bit input with -bit coefficient is
designed by the following strategy:

« A memory-unit of (2%/2) words of (W+L) -bit width is used
to store all the odd multiples of A.

* A barrel-shifter for producing a maximum of (L-1) left shifts
is used to derive all the even multiples of A .

* The L-bit input word is mappedto (L-1) -bit LUT-address by
an encoder.

» The control-bits for the barrel-shifter are derived by a
control-circuit to perform the necessary shifts of the LUT

output. Besides, a RESET signal is generated by the same
control circuit to reset the LUT output when X=0 .

A. Proposed LUT-Based Multiplier for 4-Bit Input

The proposed LUT-based multiplier for input word-size is
shown in Fig. 3. It consists of a memory-array of eight words
of (W+4)-bit width and a 3-to-8 line address decoder, along
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with a NOR-cell, a barrel-shifter, a 4-to-3 bit encoder to map
the 4-bit input operand to 3-bit LUT-address, and a control
circuit for generating the control-word (s, s;) for the
barrel-shifter, and the RESET signal for the NOR-cell.

The 4-to-3 bit input encoder is shown in Fig. 3(b). It receives
a four-bit input word (x; x, x; x,) and maps that onto the
three-bit address word(d, d; dj) , according to the logical
relations

do = (ro-11) - (21~ 22) - (X0 + (T2 3) (la)
di = (xo- x2) - (xo + (z1 - 23)) (1b)
dzz.'.u"'[) &3 (1c)

The pre-computed values of Ax(2i+1) are stored as P; for
i=0,1,2,3....7 at 8 consecutive locations of the memory-array
as specified in Table I in bit- inverted form. The decoder takes
the 3-bit address from the input encoder, and generates 8
word-select  signals,{wi,0<i<7} , to select the
referenced-word from the memory-array. The output of the
memory-array is either AX or its sub-multiple in bit-inverted
form depending on the value of X . From Table I, we find that
the LUT output is required to be shifted through 1 location to
left when the input operand X is one of the values
{(0010),(0110),(1010),(1110)}. Two left-shifts are required
if is either (0 1 0 0) or (1 1 0 0). Only when theinput word X=
(1000), three shifts are required. For allother possible input
operands, no shifts are required. Since the maximum number
of left-shifts required on the stored-wordis three, a two-stage
logarithmic barrel-shifter is adequate to perform the
necessary left-shift operations.

The number of shifts required to be performed on the outputof
the LUT and the control-bits and for different valuesof are
shown Table I. The control circuit [shown in Fig.
3(c)]accordingly generates the control-bits given by
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Fig. 4. Memory-based multiplier using dual-port
memory-array. Q=(W+4)

A logarithmic barrel-shifter for W=L=4 is shown in
Fig. 3(d). It consists of two stages of 2-to-1 line bit-level
multiplexors with inverted output, where each of the two
stages involves number of 2-input AND-OR-INVERT (AOI)
gates. The control- bits(sy,s0) and (sy,s;) are fed to the AOI
gates of stage-1 and stage-2 of the barrel-shifter, respectively.
Since each stage of the AOI gates perform inverted
multiplexing, after two stages of inverted multiplexing,
outputs with desired number of shifts are produced by the
barrel-shifter in (the usual) un-inverted form. The input X=(0
0 0 0) corresponds to multiplication by X=0 which results in
the product value A.X=0 . Therefore, when the input operand
word X= (0 0 0 0), the output of the LUT is required to be
reset. The reset function is not implemented by a NOR-cell
consisting of (W+4) NOR gates as shown in Fig. 3(e) using
an active-high RESET. The RESET bit is fed as one of the
inputs of all those NOR gates, and the other input lines of
NOR gates of NOR cell are fed with bits of LUT output in
parallel. When , the control circuit in Fig. 3(c), generates an
active-high RESET according to the logic expression:

RESET = (x¢+X)) . (X2+X3)

When RESET=1 , the outputs of all the NOR gates become 0,
so that the barrel-shifter is fed with (W+4) number of zeros.
When RESET=0, the outputs of all the NOR gates become
the complement of the LUT output-bits. Note that, keeping
this in view, the product values are stored in the LUT in

bit-inverted form. Reset function can be implemented by an
array of 2-input AND gates in a straight-forward way, but the
implementation of reset by the NOR-cell is preferable since
the NOR gates have simpler CMOS implementation
compared with the AND gates. Moreover, instead of using a
separate NOR-cell, the NOR gates could be integrated with
memory-array if the LUT is implemented by a ROM [31],
[32]. The NOR cells, therefore, could be eliminated by using
a ROM of 9 words, where the 9th word is zero and RESET is
used as its word- select signal.

To compare the area of the proposed LUT-multiplier and the
existing LUT-multiplier, we have synthesized the multipliers
for L=4 for different coefficient width by Synopsys Design
Compiler [33] using TSMC 90 nm library and listed in Table
II.

TABLE II

COMPLEXITIES OF LUT-BASED MULTIPLIERS FOR
L=4

coefficient || conventional proposed design saving
widh W || design | overhead area | total area | of area
8 700.7 232 W4 | 2516 %
16 11127 3493 8.7 | 2283 %
A 15216 476.3 10 | 528%
32 1939.7 599.8 4881 | BB %

The estimated areas are in sqpm.

Both the designs have nearly the same data arrival time, but
the proposed LUT design is found to offer a saving of nearly
23% of area over the conventional design. The saving of area
in the proposed LUT design resulting from lower storage and
less decoder complexity is reduced mainly due to the
overhead of barrel-shifter and NOR cells (indicated in Table
II).

Multiplication of an 8-bit input with a -bit fixed coefficient
can be performed through a pair of multiplications using a
dual-port memory of 8 words (or two single-port memory
units) along with a pair of decoders, encoders, NOR cells and
barrelshifters as shown in Fig. 4. The shift-adder performs
left-shift operation of the output of the barrel-shifter
corresponding to more significant half of input by four
bit-locations, and adds that to the output of the other barrel-
shifter. In the next sub-section, we present two other
optimization schemes which has been proposed recently for
reduction of storage size of LUT-multipliers[34].

B. Other Optimizations of Look-Up-Table for Memory-Based
Multiplication

Assuming the input X to be a signed number in
sign-magnitude form, we can write the product C=A.X, as
C=sx*+A-|X|=sx|4]|-|X] (4a)
Where |A| and [X| are, respectively, the magnitude-parts of
and ; denotes bit concatenation operation at the MSB of |X];
and

S=s, XOR sy  (4b)
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TABLE III
PRODUCT WORDS AND STORED WORDS FOR
DIFFERENT |X| VALUES

modulus, |X| | product OPC stored words

I3 T2EL1T0 values representation [ 25 comp, | sign-mag.
0000 0 (84 —84) 8A 8lA
0oo1 A (BA—74) TA 714
D010 24 (84 —64) 64 6A
0011 3A (8A —54) 5A 5lA
0100 44 (8A — 44) 44 4]A
0101 5A (84 —34) 3A 3|4
0110 64 (8A — 24) 2A 2|A
0111 7A (8A - A) A [A|
1000* 8A (84 —0) 0 0
1001 94 (8A+ A) e P
1010 10 (84 4 24) —— ——
1011 114 (84 +34) —— —
1100 12A (8A +44) - -
1101 134 (8A +54) e Fmi
1110 14A (8A 4+ 6A) s s
1111 154 (8A +T7A) —— ——

* Instead of storing a "0’ for (zzzaziwe) = (1 00 0), the LUT output is RESET.

For s, and sy, being the sign-bits of A and X, respectively.

Since |X] is an (L-1)-bit binary number, all possible
values of the product |Al.[X| could be stored as 2" LUT
words, while the sign-bit could be derived by an XOR
operation according to (4b). The product words for positive
values of X=x,x;x,x,xy for LUT-based multiplication (for ) is
shown in the second column of Table III. The product words
corresponding to the negative values ofX can be obtained by
sign-modification of the product words stored for the same
value of X=x,x;x,x,x,. It requires only one additional XOR
gate to determine the sign of product word according to (4b).
Therefore, instead of 32 product words only 16 values of
|Al.]X]| for all possible values of |X|=xx;x,xxo are required to
be stored. Note that the sign-exclusion technique can also be
applied for 2’s complement representation of .

It may be observed in the first column of Table III
that, the address word |X]| on the ith row is 2°s complement of
that on (16+2+i)th row for 2<i<8 . Besides, the sum of
product values on these two rows is. Let the product values on
the ith and (16+2+i)th rows beu andv , respectively. Since one
can write u=[(u+v)/2-(v-u)/2]andv=[(u+v)/2-(v-u)/2], for
(u+v)=16A4, we can have

v-1u
T} ()

The product values on the second column of Table III,
therefore, could be re-written (in a form as given in the third
column of the Table) according to (5), which we have referred
here as output product coding (OPC). It can be seen that the
product words on the third column of this Table have a
negative mirror symmetry. This behavior of OPC can be used
for further reduction of LUT size as shown in the fourth
column of the Table, where instead of storing u and v at the ith
and(16+2+i) th rows, respectively, [(u+v)/2]is stored at ith
row, for 2<i<8 . The desired product can be obtained by
adding or subtracting the stored [(v-u)/2] value to or from 8A
whenx; is 1 or 0, respectively. For the first and the eighth row,
we can store 8A and 0, respectively, in LUT. But, instead of

v-u
’U.—SA— [T

and U:&‘H—{
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storing 0 for (x;x,x;x9)=(1000) , it would be more convenient
to reset the LUT output by a RESET signal given by

RESET= (XngX]Xg) (6)

OPC can be used for sign-magnitude as well as 2’s
complement representation of the fixed coefficient, 4. As
shown in the last column of Table IIT (for sign-magnitude
form ofA ), all the stored values are positive, and the sign of
product word, can be determined according (4b). Using the
OPC approach, instead of storing 16 words after sign-bit
elimination forL=35, one can store only eightwords as shown
in Table III. In general, for L —bit input, (2%)/8only words are
required to be stored in the LUT using sign-bit exclusion and
OPC along with the odd-multiple storage scheme discussed in
the previous sub- section. Note that OPC scheme is similar to
the OBC [14], [29] for DA-based implementations, and
sign-bit exclusion scheme for LUT-multiplier can be applied
in case of DA, as well. Therefore, for performance comparison
between DA- based and LUT-multiplier based
implementations of FIR filter (in Section V), we restrict to the
LUT-optimization by the odd-multiple storage scheme only.
III. MEMORY-BASED STRUCTURES FOR FIR FILTER
USING LOOK-UP-TABLE-MULTIPLIERS

We derive here the proposed structure for memory-based
realization of an -tap FIR filter, and discuss the design of
memory cell to be used as LUT in the structure. The
input-output relationship of an N-tap FIR filter in
time-domain is given by

y(n) = h(0)  2(n) + (L) 2(n — 1) 4 h(2)
wn-2)+MN-1)-en-N+1) ()

where h(n), for n=0,1,2,...... N-1 , represent the filter
coefficients, while x(n-1) , for , represent recent input
samples, and represents the current output sample.
Memory-based multipliers can be implemented for signed as
well as unsigned operands. In case of signed operands, the
input words and the stored product values need to be in two’s
complement representation. Since the stored product values
require sign-extension in case of two’s complement
representation during shift-add operations, the LUT- based
multiplication could have a simpler implementation when the
multiplicands are unsigned numbers. Besides, without loss of
generality, we can assume the input samples {x(n)} to be
unsigned numbers and the filter coefficients {/(n)} to be
signed numbers, in general. Keeping this in view, we write (7)
alternatively as

y(n) = sign(0) - |~(0)| - z(n) + sign(1)
S| - 2(n — 1)+ - - + sign(N — 1)
SN —1)|-x(n— N+ 1) (8)

Where h(n)=sign(n)./h(n)| , for n=0,1........ N-1,|h(n)| denotes
the absolute value of h(n) and sign(n) =t1is the sign-factor,
which could be absorbed with the additions of the
corresponding term. Equation (8), then may be written in a
recursive
Form
y(n) = sign(0) - [A(0)] - x(n) + sign(1) - D(|A(1)]
- x(n) +sign(2) - D(|R(2)| - x(n) + - --
+sign(N — 1) - DAV — 1)] - 2(n))-+)) (9
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A. Memory-Based FIR Filter Using Conventional LUT
The recursive computation of FIR filter output according to
(9) is represented by a transposed form data-flow graph
(DFQG) shown in Fig. 5. It consists of N multiplication nodes
(M) and (N-1) add-subtract (AS) nodes. The function of these
nodes is depicted in Fig. 5(b). Each multiplication node
performs the

multiplication of an input sample value with the absolute
value of a filter coefficient. The AS node adds or subtracts its
input from top with or from that of its input from the left when
the corresponding filter coefficient is positive or negative,
respectively. It may be noted here that each of the
multiplication nodes of the DFG performs multiplications of
input samples with a fixed positive number. This feature can
be utilized to implement the multiplications by an LUT that
stores the results of multiplications of all possible input values
with the multiplying coefficient of a node as unsigned
numbers. The multiplication of an L-bit unsigned input with
W -bit magnitude part of fixed filter-weight, to be performed
by each of the multiplication-nodes of the DFG, can be
implemented conventionally by a dual-port memory unit
consisting of 2% words of (W+L) bit width. Each of the
(N-1) AS nodes of the DFG along with a neighboring delay
element can be mapped to an add-subtract (AS) cell.

A fully pipelined structure for -tap FIR filter for
inputwordlength L=8, as shown in Fig. 6, is derived

accordingly from the DFG of Fig. 5. It consists of N
memory-units for conventional LUT-based multiplication,
along with (N-1)AS cells and a delay register. During each
cycle, all the 8 bits of current input sample are fed to all the
LUT-multipliers in parallel as a pair of 4-bit addresses and.
The structure of the LUT-multiplier is shown in Fig. 6(b). It
consists of a dual-port memory unit of size (consisting of 16
words of -bit width) and a shift-add (SA) cell. The SA cell
shifts its right-input to left by four bit-locations and adds the
shifted value with its other input to produce a -bit output. The
shift operation in the shift-add cells is hardwired with the
adders, so that no additional shifters are required. The outputs
of the multipliers are fed to the pipeline of AS cells in parallel.
Each AS cell performs exactly the same function as that of the
AS node of the DFG. It consists of either an adder or a sub
tractor depending on whether the corresponding filter weight
is positive or negative, respectively. Besides, each of the SA
cells consists of a pipeline latch corresponding to the delays in
the DFG of Fig. 5. The FIR filter structure of Fig. 6 takes one
input sample in each clock cycle, and produces one filter
output in each cycle. The first filter output is obtained after a
latency of three cycles (1 cycle each for memory output, the
SA cell and the last AS cell). But, the first(N-1) outputs are
not correct because they do not contain the contributions of all
the filter coefficients. The correct output of this structure
would thus be available after a latency of cycles.

x(n) —=0 -0 > . Yin  sign = 1if hinis +ve
| | | | | X | | | sign =0 if fnis -ve
HN-1) B(N-2) h(N-3) #H(0) ainl _n

—{M) —=(m) M - M)

|hin|-¥in
D Gy D L A A2 a2 Xin Xin + sign -| Ain|-¥in
s i & B g
(a) (b)

Fig. 5. Modified transposed form data-flow graph (DFG) of an -tap FIR filter for LUT-multiplier-based implementation. (a) The

DFG. (b) Function of eachmultiplication node (M) and add-subtract node (AS) of the DFG.
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Fig. 7. (a) Structure of Nth order FIR filter using proposed LUT-multiplier. (b) The dual-port segmented memory core for the Nth order FIR filter. We derive
here the proposed structure for memory-based real-ization of an N-tap FIR filter, and discuss the design of
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B. Memory-Based FIR Filter Using Proposed LUT Design

The memory-based structure of FIR filter (for 8-bit inputs)
using the proposed LUT design is shown in Fig. 6.1t differs
from that of the conventional memory-based structure of FIR
filter of Fig. 5 in two design aspects.

1)The conventional LUT-multiplier is replaced by proposed,
Odd-multiple-storage LUT, so that the multiplication by an

L-bit word could be implemented by (/2) /2 words in the LUT
in a dual-port memory, as described in previous.

2) Since the same pair of address words X1and X2 are used by
all the NLUT-multipliers in Fig. 5, only one memory module
with N segments could be used instead of N modules. If all the
multiplications are implemented by a singlememory module,
the hardware complexity of 2(N—1) decoder circuits (used in
Fig. 5) could be eliminated.

X1
DUAL-PORT SEGMETED MEMORY-CORE
4-TO-16 LINE | 16, WS1
beconen (e [16x(W+4)]xN MEMORY ARRAY IN N SEGMENTS OF SEGMENT SIZE [16x(W+4)]
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Fig. 8.LUT-multiplier-based structure of an -tap FIR filter by transposed form realization using segmented memory-core.

As shown in Fig. 6, the proposed structure of FIR filter
consists of a single memory-module, and an array of N
shift-add (SA) cells, (N-1) AS cells and a delay register. The
structure of memory module of Fig. 6(a) is similar to that of
Fig. 3. Like the structure of Fig. 3, it

consists of a pair of 4-to-3 bit encoders and control circuits
and a pair of 3-to-8 line decoders to generate the necessary
control signals and word select signals for the dual-port
memory core. The dual-port memory core (shown in Fig.
6(b)) consists of [8x (W+4)] XN array of bit-level
memory-elements arranged in 8 rows of [(W+4)] -bit width.
Each row of this memory consists of N segments, where each
segment is(W-+4) -bit wide. Each segment of this dual-port
core is of size 8x(W+4), such that the ith memory segment
stores the 8 words corresponding to the multiplication of any
4-bit input with the filter weight h(i) for 0< i < N-1. During
each cycle, a pair of 4-bit sub-words X1and X2 are derived
from the recent-most input sample x(n) and fed to the pair of
4-to-3 bit encoders and control circuits, which produce two
sets of word-select signals (WS1 and WS2), a pair of control
signals((sO1, s00 )) and( s11, s10 )) two reset signals. All
these signals are fed to the dual-port memory-core as shown in
Fig. 6. N segments of the memory-core then produce N pairs
of corresponding output, those are fed subsequently to the N
pairs of barrel-shifters through the 2N NOR cells. The array
of N pairs of barrel-shifters thus produce N
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all the N LUT-multipliers in Fig. 5, only one memory module
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memory modules.
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IV. DA-BASED IMPLEMENTATION OF FIR
FILTER

In this Section, we present a DA-based implementation of
FIR filter that has the same throughput rate as that of the
LUT-multiplier-based structures. To derive the DA-based
design, we follow here the data decomposition scheme for
DA-based implementation presented in [22]. Throughput
scalable 2-dimensional (2-D) architecture for the DA-based
implementation of FIR filter
proposed
performance is presented in [22]. It is found there that the

based on a flexible
decomposition scheme is and area-delay
DA-based FIR filter structure results in minimum area and
minimum area-delay product for address-length 4. In Fig.9,
we have shown a modified form of the 2-D structure of FIR
filter presented in [22] for input word-size L = 8. The systolic
pipelined adder in the structure of [22] is replaced by
pipelined-adder-tree and pipelined-shift-add-tree in Fig.9 to
reduce the number of latches and latency. In each cycle, one
8-bit input sample is fed to the word-serial bit-parallel
converter of the structure, out of which a pair of consecutive
bits are transferred to each of its four DA-based computing
sections. The structure of each DA-based section is shown in
Fig.9(b)). It consists of a pair of serial-in parallel-out bit-level
shift-registers (SIPOSRs), (N/4) memory modules of size
[16%X(W +2)], (N/4) shift-add (SA) cells and a pipelined
shift-adder-tree.

The memory module, in each cycle, is thus fed with a pair
of 4-bit words at the pair of address-ports. The left
address-port receives 4 bits from SIPOSR-1 while the right
address-port receives 4 bits from SIPOSR-2. The bits
available at right address port are the next significant bits
corresponding to the bits available at its left address-port
(Fig.9(b)). According to the pair of 4-bit addresses a pair of
(W +2)-bit words are read-out from each memory module,
and fed to an SA cell. The SA cell shifts the right-input by one
position to left and adds that with the left-input to produce a
(W + 4)-bit output. The output of the SA cells are added
together by a pipelined-adder-tree to produce the output of a
DA-based section. The output of 4 DA-based sections are
added by pipelined shift-add-tree consisting of three adders in
two pipelined stages (shown in Fig.10). The pair of
shift-adders (SA1) in stage-1 shift their lower input to left by
two-bit positions and add with their upper input, while the
shift-adder (SA2) in stage-2 shifts the lower input by four-bit
positions and adds that to the upper input to produce a (W + 8
+ log, N)-bit output. The structure takes N cycles to fill in the

SIPOSRs, one cycle for memory access and one cycle to
produce the output of the shift-add cell in DA-based
computing sections, (logy N — 2) cycles in the
pipelined-adder-tree  and cycles at pipelined
shift-add-tree. The latency for this structure is therefore (N +
log, N +2)

9cycles, and it has the same throughput of one output per
cycle, as that of the LUT-multiplier-based structures. When
the input word-length is a multiple of 8, such as L = 8k,
(where k is any integer in general), the DA-based filter could
also be implemented by k parallel sections where each section
is an 8-bit filter identical to one of the structures of Fig. 9. The
outputs of all the 8-bit filter sections are shift-added in a
pipeline shift-add-tree to derive the filter outputs as discussed
in Section III-C for the LUT-multiplier-based
implementation. The structure for L = 8k would have the same
throughput of one output per cycle with a latency of (N + log,
N + log; k + 2) cycles.

two

V. COMPLEXITY CONSIDERATIONS

We discuss the estimation of hardware and time
DA-based as the
LUT-multiplier-based implementation of FIR filter using

com-plexities  of well  as

conventional and the pro-posed LUT designs. Based on the
estimated complexities, we compare here the performances of
all these implementations.

A. Complexity of Memory-Based Implementation using
Con-ventional LUT-Multiplier

The structure for conventional LUT-multiplier-based
imple-mentation of an N-th order FIR filter (Fig.6) for 8-bit
input and W -bit filter-coefficients requires N dual-port
memory modules each consisting of a memory array of size
[16 x (W +4)], a (W + 4)-bit adder, and a (W + 4)-bit latch ,
(N —1) AS cells and a delay cell. Each AS cell consists of one
adder/subtractor followed by a latch. The width of these
adders grows from (W + 8) bits to (W + 8 + log, N) bits across
the pipeline. Accordingly, the number of bit-latches also
grows across the pipeline. The critical-path of this structure is
max{TMCL R TSAO}, where Ty" is the access-time of the
memory modules of size [16 x(W +4)] and Ts,° is the time
required by the last adder in the systolic pipeline that
produces the final output. The actual value of the minimum
clock period not only will depend on the coefficient
word-length W and filter order N but also on how the memory
module and the adders are implemented. When, the input
samples are (k x 8)-bit wide, k such parallel sections of 8-bit
filters with (k — 1) adders in a pipeline shift-add-tree are
required. The latency for the structure for 8-bit input is (N +
2) cycles and offers a minimum sampling period of one
sample per cycle. For (k x 8)-bit input samples, the structure
yields the same throughput per cycle with a latency is (N +
log, k + 2) cycles since the pipeline shift-add-tree involves
log, k cycles. The conventional LUT-multiplier-based design
using the segmented memory core (Fig.8) involves only one
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pair of 4-to-16 lines decoders, instead of N such pairs of
decoders of Fig.6. It has the same throughput rate and the
same latency as the filter of Fig.6.

B. Complexity of Memory-Based Implementation using
Pro-posed LUT-Multiplier

Like the conventional LUT-multiplier-based structure, the
proposed LUT-multiplier-based structure also involves N
shift-add cells, (N —1) AS cells, one delay cell. It differs only
in the LUT implementation. It requires a single segmented

module of [8 x (W + 4)] x N bit-size, a pair of 4-to-3 bit
encoders and control-circuits, a pair of 3-to-8 lines decoders,
2N NOR cells and equal number of barrel shifters. Each NOR
cell consists of (W +4) NOR gates and each of the two stages
of a barrel-shifter consists of (W + 4) AOI gates. The
critical-path of the structure amounts to max{Ty'", TSAO},
where

Tau'™ = Ty R +Twor 2T aor is the delay of the proposed
LUT-multiplier and Ty“°** is the access-time of the LUT
core of depth 8, while Tyor and Taor are the propagation
delays of a NOR gate and an AOI gate, respectively. Tg,° is
the time required by the last adder in the systolic pipeline that
produces the final output, which is the same as that defined for
the conventional LUT-multiplier-based design. It has the
same throughput rate of one output per cycle and the same

C. Complexity DA-Based Implementation of FIR Filter

The DA-based FIR filter for 8-bit input size has four
DA-based sections, one word-serial bit-parallel convertor,
and a pipelined shift-add-tree. The word-serial bit-parallel
converter consists of an 8-bit register. The pipelined
shift-add-tree con-sists of three adders (two adders of (W
+2+log,N )-bit width in the first pipeline-stage and one adder
of (W + 4 + log , N) width in the second stage). Each section
of the DA-based filter requires two bit-level SIPOSRs, (N/4)
memory modules of size [16 x (W + 2)] each, (N/4) SA cells
(each consisting
module of [8 x (W + 4)] x N bit-size, a pair of 4-to-3 bit
encoders and control-circuits, a pair of 3-to-8 lines decoders,
2N NOR cells and equal number of barrel shifters. Each NOR
cell consists of (W +4) NOR gates and each of the two stages
of a barrel-shifter consists of (W + 4) AOI gates. The
critical-path of the structure amounts to max{TMPL, TSAO},
where
T - = TR +Tnor H2Taor is the delay of the proposed
LUT-multiplier and Ty °*" is the access-time of the LUT
core of depth 8, while Tyor and T are the propagation
delays of a NOR gate and an AOI gate, respectively. Tss° is
the time required by the last adder in the systolic pipeline that
produces the final output, which is the same as that defined for
the conventional LUT-multiplier-based design. It has the
same throughput rate of one output per cycle and the same

number of cycles of latency as the conventional number of cycles of latency as the conventional
LUT-multiplier-based design. LUT-multiplier-based design
TABLE IV

HARDWARE AND TIME COMPLEXITIES OF PROPOSED AND CONVENTIONAL LUT-MULTIPLIER-BASED FIR
FILTER OF ORDER N AND THE DA-BASED FILTER OF THE SAME THROUGHPUT PER CYCLE. (WORD-LENGTH
OF COEFFICIENTS = W AND WORD-LENGTH OF INPUT SAMPLES L =8 x k).

conventional LUT-multiplier-based

(k= 1) # (W + E + E + 7)-bit adders

designs design* DA-based design roposed LUT-multiplier-based design**
memory [ k#[16 x (W +4) x N]-bit memory | Nk#[16 x (W + 2)]-bit memory | k # [8 x (W + 4) x N]-bit memory
decoders 2k # 4 :16 decoders 2Nk # 4 : 16 decoders 2k # 3 : 8 decoders
Nk # (W + 4)-bit adders Nk # (W + 2)-bit adders Nk # (W + 4)-bit adders
adders | k(N —1)# (W + E + 7)-bit adders k(N — 1) # (W + 5)-bit adders | k(N — 1) # (W + E + 7)-bit adders

k—1)# (W +E+E + 7)-bit addersj(k — 1) # (W + E + E + 7)-bit adders

(k— 1) (W+E+8)+k(E— 1)

registers k # 8-bit input-register k# [(N + 1) x 8]-bit input-register k # 8-bit input-register
(W + 8k + E) bit output-register (W + 8k + E) bit output-register (W + 8k + E) bit output-register
latches® kKN(@4W + E + 23)+ K[2W (N — 1) + 10N — 2E — 8]+ KN@4W +E + 23)+

(k- 1)W+E+8)+k(E—1)

(k— 1) (W +E+8)+k(E—1)

critical-pat

h max{Ty ", Tsy%} max{Ty™", Ts,°} max {Ty"", Tsy%}
latency (N + E + 2) cycles (N+E+E +2) cycles (N + E +2) cycles
throughput 1 per cycle 1 per cycle 1 per cycle

*It corresponds to that of Fig.8 of conventional LUT-multiplier-based design using a single segmented memory module. **
Proposed LUT-multiplier-based design involves a pair of 4-to-3 bit encoders and control-circuits, 2N(W + 4) NOR gates and
4N(W + 4) AOI gates along with those listed above.
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Represents the average bit-width of adders rounded to the
nearest integers. * Indicate bit-level registers and latches. E =
log, N and E = log; k.
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Fig. 11.Latency chart of the DA-based and LUT-multiplier-based FIR filter for different filter orders.

C. Complexity DA-Based Implementation of FIR Filter

The DA-based FIR filter for 8-bit input size has four
DA-based sections, one word-serial bit-parallel convertor,
and a pipelined shift-add-tree. The word-serial bit-parallel
converter consists of an 8-bit register. The pipelined
shift-add-tree con-sists of three adders (two adders of (W
+2+logyN )-bit width in the first pipeline-stage and one adder
of (W + 4 + log , N) width in the second stage). Each section
of the DA-based filter requires two bit-level SIPOSRs, (N/4)
memory modules of size [16 x (W + 2)] each, (N/4) SA cells
(each consisting
ofa (W + 2) bit adder followed by (W + 4) bit latch).

The pipelined-adder-tree consists of (N/4 — 1) adders in

log, N — 2 stages, where the width of the adders and latches
increase by one bit after every stage. The expression of
critical-path of the DA-based structure is max{TMDA s TSAO},
where Ty™" is the access-time of the memory modules of size
[16 x (W +2)] and Ts,° is the time required by the last adder
in the pipeline shift-add-tree that produces the final output.
The latency for this structure is (N + log, N + 2) cycles and

has the same throughput of one output per cycle as that of the
LUT-multiplier-based structures. For input word-size L = 8k,
it would require k parallel filter sections and a pipeline
shift-add-tree as in the case of other designs. The latency for L
= 8k becomes (N +log, N +log, k+2) cycles due to the
additional log; k cycles involved in the shift-add-tree.

D. Comparative Performances

In Table IV, we have Ilisted the hardware- and
time-complexities of DA-based design and
LUT-multiplier-based designs. All the structures have the
same throughput per cycle. The actual throughput per unit
time would, therefore, be higher for the structure with smaller
clock period. The duration of minimum clock periods,
however, depend on the word-length W , filter order N and the
way the adders and the LUT are implemented. The second
term in the expressions of critical-path increases with the filter
order and coefficient word-length in all the structures, while
the first term in the critical-path.

TABLE V
LATENCIES OF LUT-MULTIPLIER-BASED AND DA-BASED DESIGNS FOR DIFFERENT FILTER ORDER N AND
INPUT WORD-SIZE L.

LUT-Based Design DA-Based Design
N
L=28§ L=16 L=32 L=38§ L=16 L=32

8 13 14 15 16 17 18

16 21 22 23 25 26 27
32 37 38 39 42 43 44
64 69 70 71 75 76 77
128 133 134 135 140 141 142

expression is memory access time. The memory access time
would, however, be smaller than the output addition-time in
many practical situations, and the critical path for all the
structures in that case would be equal to the time involved in
the output adder Tss°, and accordingly all the structures

would have the same throughput rate. The latency of
DA-based design is found to be log, N cycles more than the
LUT-multiplier-based designs. The latencies of DA-based
and LUT-multiplier-based structures for different filter orders
and different input word-size are listed in Table V, and
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plotted in Fig. 11. All the structures have nearly the same
complexity of pipeline latches and output register, but the
DA-based design has N times higher complexity of input
registers. All the structures involve the same number of
adders but the LUT-multiplier-based designs have higher
adder complexity, since they use adders of slightly higher
widths. The LUT-multiplier-based designs involve only one
pair of address decoders, while the DA-based design involves
N  pairs of address decoders. The proposed
LUT-multiplier-based design involves half the memory
complexity of the conventional LUT-multiplier-based design
and the DA-based design at the cost of one pair of 4-to-3 bit
encoders and control-circuits, 2N(W +4) NOR gates and
4N(W + 4) AOI gates. The complexities of conventional
DA-based FIR filter for unit throughput rate are list in Table
VI It involves less number of adders and latches than the
proposed DA-based design, but its memory size as well as the
address decoder complexity increases exponentially with
filter order, which becomes too large for large filter orders.
Moreover, the bit-width of its adders are larger than the
proposed DA-based design, and memory access time of
conventional DA-based design becomes too high for large
values of N due to high decoder complexity. We have
synthesized the DA-based design and LUT-multiplier-based
designs of 16-tap FIR filters for 8-bit and 16-bit input
word-size by Synopsys Design Compiler using TSMC 90nm
library. The area complexities of different designs thus
obtained from the synthesis result are presented in TableVII.
The proposed LUT multiplier-based design is found to
involve nearly 15% less area than the DA-based design for the
same throughput of computation.
VI. CONCLUSIONS

New approaches to LUT-based-multiplication are
suggested to reduce the LUT-size over that of conventional
design. By odd-multiple-storage scheme, for address-length
4, the LUT size is reduced to half by using a two-stage
logarithmic barrel-shifter and (W + 4) number of NOR gates,
where W is the word-length of the fixed multiplying
coefficients.

TABLE VI
HARDWARE AND TIME COMPLEXITIES
OFCONVENTIONAL DA-BASED FILTER FOR UNIT
THROUGHPUT PER CYCLE. (WORD-LENGTH OF
COEFFICIENTS =W AND WORD-LENGTH OF INPUT
SAMPLES L =8 x k)

components complexities

memory 8k[(W + E — 1)2V?]-bit memory

decoders 8k # (N/2) : (2" decoders

adders 8k # (W + E — 1)-bit adders

[8k — 1] # (W + E)-bit adders

registersé k # [(N + 1) x 8]-bit input-register
(W + 8k + E) bit output-register

latches® (W +E)3L + log, L— 1) — 2(log, L+ 1)

critical-path max{TMDA, TSAO}

latency (N + log, L +2) cycles

throughput 1 per cycle
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Represents the average bit-width of adders rounded to the
next integers. * Indicate bit-level registers and
latches. E = log, N.

TABLE VII
AREA COMPLEXITY OF DA-BASED AND
LUT-MULTIPLIER-BASED FIR

FILTERS FOR N =16 AND W = 8.

input operand area
FIR filter design

width L (sq.nm)

8 39029.56

DA-based
16 78895.96
conventional 8 40845.77
LUT-multiplier-based

16 82519.92

8 33880.80

proposed LUT-multiplier-based

16 68558.92

Three memory-based structures having one throughput per
cycle are designed further for the implementation of FIR
filter. One of the structures is based on DA principle, and the
other two are based on LUT-based multiplier using the
conventional and the proposed LUT designs. All the
structures are found to have the same or nearly the same cycle
periods, which depend on the implementation of adders, the
word-length and the filter order. The conventional
LUT-multiplier-based filter has nearly the same memory
requirement and the same number of adders, and less number
of input registers than the DA-based design at the cost of
higher adder-widths. The LUT-multiplier-based filter involve
N times less number of decoders than the DA-based design.
The proposed LUT-multiplier-based design involves half the
memory than the DA-based and conventional LUT-based
designs at the cost of ~ 4N W AOI gates and nearly ~ 2N W
NAND/NOR gates. The LUT-multiplier-based design of FIR
filter therefore could be more efficient than the DA-based
approach in terms of area-complexity for a given throughput
and lower latency of im-plementation. From the synthesis
result obtained by Synposis Design Compiler using TSMC 90
nm library, we find that the proposed LUT multiplier-based
design involves nearly 15% less area than the DA-based
design for the implementation of a 16-tap FIR filter having the
same throughput per cycle. The proposed LUT-multiplier
could be used for memory-based implementation of cyclic
and linear convolutions, sinusoidal transforms, and
inner-product  computation. The  performance  of
memory-based structures, with different adder and memory

implementations could be studies in future for different DSP
applications. The implementation of DA-based design could
be improved further by sign-bit exclusion and OBC
techniques, and so also the LUT-multiplier could be improved
further by similar techniques. Further work is required to be
carried out to find other possibilities of LUT-optimization
with different address sizes for efficient memory-based
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