International Journal of Engineering Research And Management (IJERM)
ISSN : 2349- 2058, Volume-01, Issue-08, November 2014

Comparative analysis of PSO variants for Voltage
control and Loss minimization

R Pradeep Sudha, Ch.V.S.R.G.Krishna, Ch Rambabu

Abstract— In this paper, two variants of particle swarm
optimization (PSO) algorithms namely Coordinated
Aggregation PSO (CAPSO) and Adaptive PSO (APSO)
are compared with the conventional PSO algorithms for
the optimal steady-state performance of power system.
The proposed methods are used for loss minimization and
voltage control. Simulation results of standard IEEE 30
test system is presented to illustrate the effectiveness of
the proposed approaches under simulated conditions.

Index Terms— Coordinated aggregation (CA), particle
swarm optimization (PSO), Adaptive particle swarm
optimization (APSO).

I. INTRODUCTION

The Optimal Power Flow (OPF) is an important criterion in
today’s power system operation and control due to scarcity of
energy resources, increasing power generation cost and ever
growing demand for electric energy. As the size of the power
system increases, load may be varying. The generators should
share the total demand plus losses among themselves. The
sharing should be based on the fuel cost of the total generation
with respect to some security constraints. The security
constraints are real and reactive power generation limits, tap
changing transformers line flow limits. Since the dependence
each generator fuel cost on the load it supplies, the objective
of the OPF algorithm is to allocate the total electric power
demand and losses among the available generators in such a
manner, that it minimizes the electric utility’s total fuel cost
while satisfying the security constraints. But it is very difficult
task considering all the constraints.

Natural creatures sometimes behave as a swarm. One of the
main streams of artificial life research is to examine how
natural creatures behave as a swarm and reconfigure the
swarm models inside a computer. Reynolds developed boid as
a swarm model with simple rules and generated complicated
swarm behavior by computer graphic animation. Boyd and
Richerson examined the decision process of human beings
and developed the concept of individual learning and cultural
transmission. According to their examination, human beings
make decisions using their own experiences and other
persons’ experiences [1].
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A new optimization technique using an analogy of swarm
behavior of natural creatures was started in the beginning of
the 1990s. Dorigo developed ant colony optimization (ACO)
based mainly on the social insect, especially ant, metaphor
[2]. Each individual exchanges information through
pheromones implicitly in ACO. Eberhart and Kennedy
developed particle swarm optimization (PSO) based on the
analogy of swarms of birds and fish schooling. Each
individual exchanges previous experiences in PSO. These
research efforts are called swarm intelligence [1].

In the recent years, the effort is continued by the same and
other researchers [3-5] generating more effective EAs. The
reason for the growing development of EA is that
conventional optimization methods have failed in handling
non-convexities and non-smoothness in engineering
optimization problems [6]. However, their main problem
remains the same, achieving the global best solution in the
possible shortest time.

In recent years, various PSO algorithms have been
successfully applied in many power-engineering problems
[7]-[18]. Among them, the hybrid PSO satisfactorily handled
problems such as distribution state estimation [8] and loss
power minimization [9] performing better convergence
characteristics than conventional methods. However, these
PSO algorithms are based on the original concept introduced
by Kennedy and Eberhart [1].

In this paper, we proceed to the effort of developing more
effective PSO algorithms by reflecting recent advances in
swarm intelligence [19] and, in addition, by introducing new
concepts. Under these conditions, two new hybrid PSO
algorithms are proposed, which are more effective and
capable of solving non-linear optimization problems faster
and with better accuracy in detecting the global best solution.
In this paper, the APSO, and CA are applied in two nonlinear
optimization problems of power systems, namely, the loss
minimization and voltage control problems. The results
obtained are compared with conventional PSO algorithm for
demonstrating improved performance of the proposed
algorithms.

II. PARTICLE SWARM OPTIMIZATION

Swarm behavior can be modeled with a few simple rules.
Schools of fishes and swarms of birds can be modeled with
such simple models. Namely, even if the behavior rules of
each individual (agent) are simple, the behavior of the swarm
can be complicated. Reynolds utilized the following three
vectors as simple rules in the researches on boid.

» Step away from the nearest agent

» Go toward the destination

» Go to the center of the swarm
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The behavior of each agent inside the swarm can be modeled
with simple vectors. The research results are one of the basic
backgrounds of PSO.
Each agent decides its decision using its own experiences and
the experiences of others. The research results are also one of
the basic background elements of PSO. According to the
above background of PSO, Kennedy and Eberhart developed
PSO through simulation of bird flocking in a two-dimensional
space. The position of each agent is represented by its x, y axis
position and also its velocity is expressed by vx (the velocity
of x axis) and vy (the velocity of y axis). Modification of the
agent position is realized by the position and velocity
information.
Bird flocking optimizes a certain objective function. Each
agent knows its best value so far (pbest) and its x, y position.
This information is an analogy of the personal experiences of
each agent. Moreover, each agent knows the best value so far
in the group (gbest) among pbests. This information is an
analogy of the knowledge of how the other agents around
them have performed. Each agent tries to modify its position
using the following information:

» The current positions (x, y)

» The current velocities (vx, vy),

» The distance between the current position and pbest

» The distance between the current position and gbest

» This modification can be represented by the concept

of velocity (modified value for the current
positions). Velocity of each agent can be modified

by the following equation:
k

Vi = wv! + ¢ rand, * (pbest, —s') +c,rand, * (gbest—s') (1)
where vi* is velocity of agent i at iteration k, w is weighting
function, c1 and c2 are weighting factors, rand1 and rand2 are
random numbers between 0 and 1, sik is current position of
agent i at iteration k, pbest; is the pbest of agent i, and gbest is
gbest of the group. Namely, velocity of an agent can be
changed using three vectors such like boid. The velocity is
usually limited to a certain maximum value. PSO using (1) is
called the Gbest model.

— W, ) /(iter,

W= Wi = (Wi max ) ¥ iter (2)

The following weighting function is usually utilized in (1):
Where wp, is the initial weight, w;, is the final weight,
iter.x 1S maximum iteration number and iter is current

iteration number.

The RHS of (1) consists of three terms (vectors). The first
term is the previous velocity of the agent. The second and
third terms are utilized to change the velocity of the agent.
Without the second and third terms, the agent will keep on
“flying” in the same direction until it hits the boundary. As
shown below, for example, Wy, and wp;, are set to 0.9 and
0.4. Therefore, at the beginning of the search procedure,
diversification is heavily weighted, while intensification is
heavily weighted at the end of the search procedure such like
simulated annealing (SA). Namely, a certain velocity, which
gradually gets close to pbests and gbest, can be calculated.
PSO using (1), (2) is called inertia weights approach (IWA).
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Figure 1: concept of modifications of a searching point by
PSO

s* : current searching point

s modified searching point
k .

% : current velocity

vF*': modified velocity

v : velocity based on pbest

pbest

% : velocity based on gbest

gbest

The current position (searching point in the solution space)
can be modified by the following equation:

st =5+ v (3)

Figure 1 shows a concept of modification of a
searching point by PSO, and Fig. 1 shows a
searching concept with agents in a solution space.
Each agent changes its current position using the
integration of vectors as shown in Fig. 1.

III. PSO VARIANTS

A. Coordinated Aggregation-based PSO

The basic system equation of PSO [(1), (2), and (3)] can be
considered as a kind of difference equation. Therefore, the
system dynamics, that is, the search procedure, can be
analyzed using eigen values of the difference equation.
Actually, using a simplified state equation of PSO, Clerc and
Kennedy developed CA of PSO by eigen values [8, 14]. The
velocity of the constriction factor approach (simplest
constriction) can be expressed as follows instead of (1) and
2):

vi™ = K[v! + ¢, *rand, * (pbest, — s\ ) +c, * rand,, (gbest — s )] (4)

Where

2
2-¢p—+/ 2—4(p’

where ¢ and K are coefficients.

K= wherep = ¢, +¢,,0 > 4....(5)

For example, if ¢ =4.1, then K = 0.73. As w increases above
4.0, K gets smaller.For example, if ¢=5.0, then K =0.38, and
the damping effect is even more pronounced. The
convergence characteristic of the system can be controlled by
w. The whole PSO algorithms by IWA and CA are the same
except that CA utilizes a different equation for calculation of
velocity [(4) and (5)]. Unlike other EC methods, PSO with
CA ensures the convergence of the search procedures based
on mathematical theory. PSO with CA can generate
higher-quality solutions for some problems than PSO with
IWA. However, CA only considers dynamic behavior of only
one agent and studies on the effect of the interaction among
agents.

B. Adaptive PSO

The following points are improved to the original PSO with
IWA.
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» The search trajectory of PSO can be controlled by
introducing the new parameters (P1, P2) based on
the probability to move close to the position of
(pbest, gbest) at the following iteration.

» The ink term of (1) is modified as (7). Using the

equation, the center of the range of particle
movements can be equal to gbest.

» When the agent becomes gbest, it is perturbed. The
new parameters (P1, P2) of the agent are adjusted so
that the agent may move away from the position of
(pbest, gbest).

» When the agent is moved beyond the boundary of
feasible regions, pbests and gbest cannot be
modified.

» When the agent is moved beyond the boundary of
feasible regions, the new parameters (P1, P2) of the
agent are adjusted so that the agent may move close
to the position of (pbest, gbest).

The new parameters are set to each agent. The weighting
coefficients are calculated as follows:

2 2 ©

C,=—, C,=——C
2 P 1 P, 2
The search trajectory of PSO can be controlled by the
parameters (P, P,). Concretely, when the value is enlarged
more than 0.5, the agent may move close to the position of
pbest/gbest.

w = gbest —({c, (pbest — x) + ¢, (gbest — x)}/ 2+ x) (7)
Namely, the velocity of the improved PSO can be expressed

as follows:
! =w, +c,rand, * (pbest, —s') +c,rand, *(gbest —s)

®)
The improved PSO can be expressed as follows (steps 1 and 5
are the same as PSO):

» Generation of initial searching points: Basic
procedures are  the same as  PSO.
In addition, the parameters (P1, P2) of each agent are
set to 0.5 or higher. Then, each agent may move
close to the position of (pbest, gbest) at the following
iteration.

» Evaluation of searching points: The procedure is the
same as PSO. In addition, when the agent becomes
gbest, it is perturbed. The parameters (P, P,) of the
agent are adjusted to 0.5 or lower so that the agent
may move away from the position of (pbest, gbest).

» Modification of searching points: The current
searching points are modified using the state
equations (7), (3) of adaptive PSO.

v

IV. PROBLEM FORMULATION

The OPF problem is to optimize the steady state performance
of a power system in terms of an objective function while
satisfying several equality and inequality constraints.
Mathematically, the OPF problem can be formulated as given

Min F(x,u) )
Subjectto g(x,u) =0 (10)
h(x,u) <0 (11)
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where x is a vector of dependent variables consisting of slack

bus power Fy; , load bus voltages V', , generator reactive

power outputs QG , and the transmission line loadings S I
Hence, x can be expressed as given

x' =[PV, .V, 06O, S-S, 1 (12)
where NL, NG and nl/ are number of load buses, number of

generators and number of transmission line respectively.
u is the vector of independent variables consisting of

generator voltages Vg, generator real power outputs PG
except at the slack bus PG1 , transformer tap settings 7, and

shunt VAR compensations Q.. Hence u can be expressed as
given

u' =V Vg Py Py 1Ty, O Oc, 1 (13)
Where NT and NC are the number of the regulating
transformers and shunt compensators, respectively. F is the
objective function to be minimized. g is the equality
constraints that represents typical load flow equations and /4 is
the system operating constraints

1) Objective functions
In this paper, the objective(s)(J) is the objective function to be
minimized, which is one of the following:
(i) Objective function-1 ( Loss Minimization)
The optimal reactive power flow problem to minimize active
losses can be formulated as

nl
Jl = I)Losx (xt'u) = ZB

i=1 (]4)
where x is the vector of depended variables, u is the vector
of control variables, F} is the real power losses at line-l, and n/
is the number of transmission lines.
(it) Objective function-2 ( Voltage Control)
Voltage profile is one of the quality measures for power
system. It can be improved by minimizing the load bus
voltage deviations from 1.0 per unit. The objective function
can be expressed as

NL
Jy =2 -V (15)
i=1

where V ;¥ is the pre-specified reference value at load bus-i,
which is usually set at the value of 1.0 p.u., and NL is the
number of load buses.

2) Equality constraints
The equality constraints of the OPF reflect the physics of
the Power System as well as the desired voltage set points
throughout the system. The physics of the Power System are
enforced through the power flow equations which require that
the net injection of real and reactive power at each bus sum to
Zero

n
PGi - PDi - jél v VjHYij cos(9ij - 51. + 5}.) =0
n
- + sin@.. -0.+0.)=
QGi QD[ jé[Vi VjHYij gm(gy 51 ()]) 0

(16)
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P. . .
where ~ ¢ and Oy are the real and reactive power outputs
injected at bus- i respectively, the load demand at the same

. P, )

bus is represented by ~ 27 and O, , and elements of the bus
| . Yl 40

admittance matrix are represented by | “'and "7 .

3) Inequality constraints
The inequality constraints of the OPF reflect the limits on
physical devices in the Power System as well as the limits
created to ensure system security. This section will lay out all
the necessary inequality constraints needed for the OPF
implemented in this thesis.
1) Generators real and reactive power outputs

Py <P, <Pr™,i=1, ,Ng
Qc'?iin SQG{ SQ(Tiax>i:1’ ’NG (17)
2) Voltage magnitudes at each bus in the network

17imin < 17’ < Vvilnax’l- — 1, ,NL (18)
3) Transformer tap settings
]-;min ST; STimaX,izl, ,N (19)

4) Reactive power injections due to capacitor banks
L0, 2057i=1 S (20)
5) Transmission lines loading

S,<8™.i=1, N o

V. PERFORMANCE EVALUATION

The main focus of this paper is the comparison of the two
alternative PSO algorithms with the conventional PSO
algorithm. Specifically, they need to handle two optimization
problems, namely, minimization of 1) real power losses in
transmission lines (Reactive Power Control) and 2) voltage
deviation on load buses (Voltage control). In all case studies,
as decision variables, generator voltages, transformers tap
settings, and reactive power compensators are chosen. In this
paper, these variables are considered to be continuous.

To verify the feasibility of the proposed PSO algorithms
(PSO, CAPSO and APSO) in the Loss minimization and
voltage control, they are applied on the IEEE 30-bus system.
The results are also compared with conventional PSO
algorithm. All PSO algorithms are simply called competitors.
The topology and the complete data of this network can be
found in [20]. The network consists of 6 generators, 41 lines,
4 transformers, and 2 capacitor banks. In the transformer
tests, tap settings are considered within the interval[0.9,1.1].
Voltages are considered within the range of [0.95,1.1].

C. Results with Loss minimization objective
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TABLE -I Optimal control variable setting for Loss
minimization objective

Control Min |Max PSO CAPSO APSO
Variables
P, 50 200 80.69 77.33 77.16
P, 20 80 80.00 80.00 80.00
P; 15 50 50.00 50.00 50.00
Py 10 30 30.00 30.00 30.00
P;; 12 40 12.00 40.00 40.00
Py 10 35 35.00 10.00 10.00
v 0.95 1.10 1.0673 1.0593 1.0681
v, 0.95 1.10 1.0599 1.0528 1.0641
Vs 0.95 1.10 1.0383 1.0321 1.0453
Vg 0.95 1.10 1.0409 1.0357 1.0672
Vi, 0.95 1.10 1.0456 0.9728 1.0409
Vis 0.95 1.10 1.0332 1.0609 1.0323
Ty, 0.90 1.10 0.9661 0.9750 1.0111
T, 0.90 1.10 1.1000 1.0116 0.9841
T)s 0.90 1.10 0.9739 1.1000 0.9595
Tss 0.90 1.10 1.0117 0.9863 0.9809
Ocno 0.00 0.10 0.1000 0.0596 0.0176
Oci> 0.00 0.10 0.1000 0.0319 0.0596
Ocs | 000 | 010 | 0.0577| 0.0532 0.0552
Oci 0.00 0.10 0.0677 0.0733 0.0705
Ocao 0.00 0.10 0.0368 0.0440 0.0414
O, 0.00 0.10 0.0978 0.1000 0.1000
Ocss 0.00 | 0.10 0.0179 0.0000 0.0254
Ocas 0.00 0.10 0.0663 0.0873 0.0662
Ocso 0.00 0.10 0.1000 0.0000 0.0314
Cost($/h) 924.2717 1932.8452 1932.4037
Voltage Deviation 0.8649 0.4042 0.9952
Ploss (MW) 4.29 3.93 3.76
Power loss Vs No.of | Fitness Vs No.of
iterations Iterations
O
A =
=9 =
.
o
e
&
< | - :
U % ot toratons
o -
%)
=5 o
< | e

Figure 2 Convergence characteristics of PSO, CAPSO

Table 1 shows the optimal setting of control variables for loss
minimization objective. From Table 1, Power loss using
APSO is 3.76 MW which is less than 3.93MW using CAPSO
and 4.29MW using conventional PSO.
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Figure 2 shows the graphs plotted between Power loss vs
iterations and Fitness variation for PSO, CAPSO and APSO
algorithms for IEEE-30 bus system respectively.

D. Results for Voltage Control objective

Table 2 shows the optimal setting of control variables for
voltage deviation minimization objective. From Table 2,
Voltage deviation using APSO is 0.0745 p.u which is less
than 0.0764 p.u. using CAPSO and 0.0794 p.u. using
conventional PSO.

Figure 3 shows the graphs plotted between Voltage deviation
Vs iterations and Fitness variation for PSO, CAPSO and
APSO algorithms for IEEE-30 bus system respectively.
Table 2 shows the optimal setting of control variables for
voltage deviation minimization objective. From Table 2,
Voltage deviation using APSO is 0.0745 p.u which is less
than 0.0764 p.u. using CAPSO and 0.0794 p.u. using
conventional PSO.

Figure 3 shows the graphs plotted between Voltage deviation
Vs iterations and Fitness variation for PSO, CAPSO and
APSO algorithms for IEEE-30 bus system respectively

TABLE —II
OPTIMAL CONTROL VARIABLE SETTING FOR VOLTAGE
DEVIATION MINIMIZATION OBJECTIVE

Voltage Deviation Vs | Fitness Vs No.of
No.of iterations Iterations
p—— pve———
§ o ‘j
®)
m 0.06]
Q- 10|
00 )
Voltage Deviation e
variation(PSO)
P ——y. preem————
O ;gnm
%)
Q- s
< 005 .
&) o
Voltage Deviation
variation(CAPSO)
- . i
%) o
c- 0.05
< !
Voltage Deviation
variation(APSO)

Control [Min [Max

Variables |Limit |Limit PSO CAPSO APSO
P, 50 200 150.31 177.86 144.90
P, 20 80 47.94 57.27 61.28
Ps 15 50 19.72 17.09 30.61
Py 10 30 24.82 20.98 30.00
P 12 40 23.35 12.00 12.00
P 10 35 26.03 17.09 13.34
v, 0.95 [1.10 1.0089 0.9945 0.9978
v, 0.95 (1.10 1.0126 1.0041 0.9982
Vs 095 [1.10 1.0171 1.0165 1.0155
Vs 0.95 [1.10 0.9977 1.0025 1.0053
Vi 0.95 [1.10 1.0323 1.0109 1.0221
Vi3 095 [1.10 0.9847 1.0271 1.0232
T 0.90 [1.10 1.0422 1.0155 1.0334
T, 0.90 (1.10 0.9960 0.9842 0.9831
T;s 0.90 [1.10 0.9504 1.0238 1.0083
Tss 0.90 |[1.10 0.9701 0.9853 0.9748
Ocio 0.00 (0.10 0.0657 0.0548 0.0542
Ocis 0.00 (0.10 0.0394 0.0495 0.0109
Ocis 0.00 (0.10 0.0443 0.0561 0.0421
Oci7 0.00 (0.10 0.0382 0.0315 0.0291
Oc2 0.00 (0.10 0.1000 0.0780 0.1000
Oca; 0.00 (0.10 0.1000 0.0896 0.0893
Ocs3 0.00 [0.10 0.0484 0.0372 0.0411
Ocaa 0.00 (0.10 0.0861 0.1000 0.0999
Ocse 0.00 (0.10 0.0282 0.0449 0.0263
Cost($/h) 818.0057 [811.2806 |819.7407
Voltage Deviation 0.0794 0.0761 0.0745
Ploss (MW) 0.1229 0.0847 0.1158
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Figure 3 Convergence characteristics of PSO, CAPSO and
APSO for Voltage control objective

CONCLUSIONS

This paper proposed PSO variants such as Coordinated
Aggregation PSO (CAPSO) and Adaptive PSO (APSO) The
proposed PSO algorithms competed in the optimization
problems of Power loss minimization and Voltage control
problems. The results of the proposed CAPSO and APSO
methods for different objective functions are compared with
conventional PSO method to show the effectiveness of the
proposed algorithms. Proposed algorithms been applied to
IEEE-30 bus system and observed APSO outperforms the CA
and Conventional PSO.
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