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Trends in the Mathematics of Queuing Systems

Sulaiman Sani, Onkabetse A. Daman

Abstract— In this article, we study the trends in queuing
system mathematics (mathematical study
of waiting lines) from its inception in 1909 to date. The ai
m is to educate on how advances in system engineering a
nd operations research are transforming study trends in
terms of scholarly contributions (historical evolution), pr
oblems formulation, analytic techniques, modeling and r
esults. To achieve this objective, articles on this field of o
perations research are studied and general trends
uncovered and made easily understandable for
educational purposes. In the end, we came out with
deductions that trends in the mathematics of queuing
systems depend to a large extend on developments in
operation systems and engineering. What makes this
paper most interesting is the understanding that queuing
problems are fast becoming pure stochastic (diffusion)
problems. This understanding is made more elaborated
and easily understandable for a wide variety of audience.

2000 Mathematics Subject Classification: 60K25
Index Terms— Queue, occupation rate, the G/G/C
queuing model, regular variation

I. INTRODUCTION

There are basic words an interested reader of a piece
covering the mathematics of queuing systems should initially
understand'. Beginning with the word queue which derives its
meaning from the Latin word ‘’cauda” meaning tail. Literally,
to queue is to tail or wait of course for a reason which may be
to receive service’. On the other hand, queuing is a process
more precisely, a diffusion process and queuing theory
studies such diffusions involving the manner which inputs,
arrivals, packets or customers move from a concentrated area
(waiting line) to an isolated one (service area) in somewhat
macroscopic, visibly continuous or semi continuous process’.
Operationally, Medhi [33] defines queuing theory as the
mathematical study of waiting lines formed whenever the
demand for service exceeds the capacity to provide it. In its
pure mathematical sense, it refers to the theory of formation
and behavior of queues (transient and limiting)* involving
problems connected with traffic congestions and storage
systems. These definitions extend the relevance of queuing
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* Instantaneous and long-time behavior of queues
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theory to a wide variety of contentious situations such as how
customers checkout line forms (arrival process), how it can be
minimized (queuing analysis), how many calls a telephone
switch can handle (service capacity), how long a customer can
wait for a service (waiting time analysis) and so on. Generally,
the object of queuing theory is relieving problems in business
settings primarily in operational management and operations
research via the well-established theorems of mathematics.

1.1 Queue Mathematics: Significance:

To date, the mathematics of queuing systems enjoys
tremendous attention resulting from the ever increasing,
multi-complexity of service systems’. From service systems
that are homogenous to those with reasonable variations®
(deterministic and stochastic) for operational relevance,
marketing, system development or advancement. This makes
the mathematics a continuum with dynamical behaviors and
trends. Service systems are advancing and advances are
transforming service spheres necessitating changes in trends
and study dimensions. Intuitively, understanding these trends
will lead to a better understanding of the future of service
systems where queuing is evident. On the role of studying
historical trends to knowledge advancements and motivation
for instance, Man-Keung and Tzanakis [32] has pointed out
that historical behaviors enhances learning and teaching, an
appetizer or a dessert which caters respectively to motivation,
content or enrichment. More so, trends of the mathematics of
queues can uncover hidden realities vital for understanding
not only what Man-Keung and Tzanakis [32] indicated, but a
gateway to the future of systems. This is because system
process always precedes system product. Thus, studying the
mathematical behaviors of queuing systems will not only
enrich us with tales but aid our understanding of complicated
scenarios we define for operational systems. The work is
organized in (7) sections as follows; in section two, we
present challenges in queuing mathematics and analysis
necessitating behavioral shift generally. In section three,
evolutionary (historical behavior) trends in queuing
mathematics from inception to the present were identified, in
each case, essential scholarly contributions are identified and
stated. Section four discusses the trends of queuing systems
mathematics today and section five identifies the
accompanying methodological behavior presented in form of
summarized and easily understandable limit theorems for
selected queues. In section six, we investigate recent trends in
queue mathematics with the emergence of data traffic
phenomenon in telecommunications and computer systems
today, fractal queuing theory and effect of long-range
dependencies in queuing performance vis-a-vis contributions
of eminent scholars and mathematicians. The article is

5 Computer systems, telecommunication systems and complex
productive systems.
6 Heterogenous server systems.
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concluded in section seven with summary of trends in queuing
theory.

II. WHY CHANGING TRENDS

Mathematizing queuing systems (queuing theory or
modeling) is a challenging task. It faces serious challenges
depending on the nature and reality of the queue in question.
The challenges generally emanated from the inter relationship
between system engineering, system design and queuing
theory. A question of interest to the reader is that; how does
advancements in system design and engineering create
problems to queuing theory mathematics and modeling?
Simply put, advances come with newness which defines
volatile scenarios ’  for queues forcing challenging
transformations in study trends, behaviors and dimensions.
These volatile scenarios among others include; queuing
systems realities, analytic technique suitability, modeling,
conditioning and adaptations, etc.

On this basis, queuing systems can be seen as either stable
or unstable® (noisy) systems; that is the nature of queuing
systems. In early queuing period, stable queuing models that
can be analyzed classically using Laplace techniques are more
often constructed and modeled see Whitt [48]. Whereas
modeling looks easier in stable queues, the converse is true in
unstable or noisy queues. This is because the later possesses
more randomness that transforms its distribution from normal
to somewhat non-normal. Also, unstable queues are known to
exhibit long-range dependencies, a long-term memory
problem in certain queues’ that makes decay slower than the
exponential random variable, see Stralka et al [41]. What is
challenging is that, noisy systems with unstable queues that
seemed difficult in analysis via the classical approaches
are the bulk found in today’s systems'’. Strzalka et al [41]
indicated that using classical models in this stage of network
traffic modeling for instance can lead to mistaken
performance predictions and inadequate network design.
More generally, if we fail to represent processes in queuing
systems accurately, that will lead to under estimations or
otherwise of performance. This necessitates changing trends
in queuing theory mathematics generally. But even for stable
queues, modeling is pretty hard especially in the context of
transient solution and analysis. On this difficulty, Medhi [33]
indicated that, the transient-state distributions of simple
models are even difficult to handle and to date, that of the
M/G/1 queue as simple as it looks is unknown. Whitt [48]
pointed out that classical modeling in queuing theory is under
the Laplacian curtain and complex systems analysis via
Laplace transform is uneasy and challenging. Existing
techniques are really difficult even for simple models not
to talk of complex models which are properties of
integrated systems. Consequently, the need to shift study
trends.

Another challenging aspect of modeling queuing systems
necessitating changes in trends and transformation is the
physical realities of queues. Queuing systems are generally

7 Complex scenarios lots of intricacies and
complications.

8 Stability for a given queue depends on both the arrival and service
processes.

° Heavy traffic queues for instance.

10 Whitt [45] posited that, it is not easy to handle double, triple or

quadruple transforms.

often containing
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unconstrained ' and modeling unconstrained problems is
difficult. As Sulaiman et al [43] puts it, exact solution for an
unconstrained problem is merely an ideal case and practically
is unrealistic. Queuing systems especially those with general
arrival and service distributions (the G/G/C’s) are in essence,
unconstrained in nature, exact solutions are generally too
ideal for such unconstrained problems. Consequently,
numerical approximations which can provide room for
error analysis are more realistic, functional and
operative. Thus, the need to enact the numerical trend that
proffers easy solution however, meaningful. Numerical
approximations and simulations of queuing parameters
nowadays are necessary though not sufficient to provide
relief. Similarly, it is extremely difficult to control realities
such as queuing shocks; making modeling assumes lots of
stability conditions. The balking process, the shunting process
and the reneging process etc for instance are realistic noises'
on any queuing system. Controlling such noises for optimality
poses a serious challenge to modeling the same way Brownian
noise shocks the financial markets. This is because, the
randomness in the two systems is similar and the calculus is
the same. The calculus to date is not understood by very many
queuing theorist. It is a different form of calculus and its
definition of system estimators is really tricky and problem
posing. Moments such as the variance of a stochastic waiting
time may be challenging to compute not to talk of joint
distributions of multiple queuing systems in a connected
topological space which are properties of integrated
networks. For such queuing systems, a shift in
mathematics from the classical use of Laplace techniques
to a more vibrant use of the diffusion approximations is
evident.

The nature of queuing in some systems such as the internet
challenges modeling in system engineering and data traffic
science. Today, service systems are so complex that queuing
features such as queue openness, queue security, queue
scaling, failure handling rates and concurrency are
understated, see Strzalka et al [41]. This occurs due to system
complexities leading to degradation and parameter collapse
which undermine the sanctity of results. The absence of a
unified queuing model to solve problems in queuing
systems creates an intrinsic problem of multiplicity of
models which solves similar queuing problems differently.
Though, most mathematical approximations via different
analytic techniques seem to agree, the choice in practice and
applications is difficult and often not in a usable form. As
Whitt [48] pointed out, that the limitations of queuing theory
are obviously due in part to the inability of obtaining queuing
results (models) in a usable form. At present, queuing theory
remains under the Laplacian curtain and analyzing complex
systems via the Laplace transform is really uneasy and
challenging. Data traffic in heavy traffic and diffusive
queuing systems such as those found in telecommunications
are gathering weight, [see Whitt [48], Christian et al [9], Ward
and Glynn [47], David et al [12],.. .]"%. This indicates that all

"' Queuing problems are often open boundary problems.

Applying constraints to such systems is a daunting challenge.
12 Processes that generate continuous time unsteadiness in a queuing
system.

"3 In this modeling era, the number of models constructed
from the time of A.K. Erlang to date

are enormous and the coverage is wide.
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hope is not lost in advancing and improving queuing systems
through mathematics; that is, in terms of study dimensioning
and analytic techniques. In fact, we can argue with reasons
that the challenges ended up strengthening queuing studies
and modeling. This is evident in the quantum of models
developed over time by queuing theorists of repute to
understand system performance and behaviors. More so, we
see the evolution of new behaviors and trends in queuing
theory for instance fractal queuing theory, heavy traffic
approximation, etc to capture every bit of challenge posed by
system engineering and its accompanying developments.

III. EVOLUTIONARY TRENDS OF QUEUING THEORY
MATHEMATICS

The historical evolution of queuing theory mathematics is
interesting as the theory itself. Medhi [33] dated the origin of
queuing mathematcis as far back as 1909 when the Danish
mathematician Agner Krarup Erlang published his
fundamental paper on congestion in telephone traffic. Erlang,
in addition to formulating analytic practical problems and
solutions laid a solid foundation to queuing theory in terms of
basic assumptions and techniques of analysis. Interestingly,
these techniques are being used to date even in the wider areas
of modern communications and computer systems. For
instance, using Erlang basic assumptions and techniques,
Ericsson telecom developed a programming language called
Erlang used in programming concurrent processes and
verifications such as the conditional term rewriting systems
(CTRS) see Thomas and Giesl [45]. Erlang could not live
long to see how his works transformed telecommunications
engineering. Interestingly, his contribution was recognized in
1946 when the International Unit of Telephone Traffic
(CCITT) was named Erlangs in honor of Agner Krarup
Erlang, see Brockmeyer and Halstrom [6]. His works
contributed immensely to the development of queuing models
vital for analyzing lost and delay behaviors in queuing
systems mathematically. For instance, the Erlang-B and
Erlang-C mathematical models developed by A.K. Erlang are
used in telephone and telecommunications analysis to define
probabilities that an incoming call'! is rejected or delayed.
Also, the Erlang-C model gives the probability that an
incoming call has to wait'® before service, see Kleinrock [28].
The developed Erlang models are deterministic and assume
Poissonian arrival process and exponentially distributed
service times. These models can be computed statistically to
measure both probabilitiecs. What is essential here is that
the initial trend in queuing theory mathematics is
statistically deterministic.

Though, Erlang pioneered queuing theory mathematics
especially its applications to operations research, the pioneer
of this type of mathematics from the perspective of stochastic
processes was D. G. Kendal. In 1951, Kendal developed and
introduced certain notations which to date are adopted to
denote queuing systems. The Kendal’s A/B/C notation '°
specifies three basic characteristics in a given queuing system
namely; the arrival process (A), the service distribution (B)

4 An arrival occurring at an arbitrary time t.
15 For a time t strickly finite.

1 .
% Kendall’s A/B/C notation over the years have been
modified to include necessary parameters
such as size of waiting rooms which may be finite or infinite, noisy
processes, etc.

66

and the number of servers in a system. Kendal’s integral
equation relating the Laplace-Stieljes transformations of the
busy period and that of the arrival process is a remarkable
achievement and breakthrough in the field of queuing theory.
For, it depicts the continuous nature and behavior of queuing
systems in a more advanced manner than the Erlangian
models. The Kendal’s integral equation simplifies lots of
queuing problems in single server systems with priority
customer classes. More so, it reflects the reality of queuing
systems at rush and peak times which are continuous streams
of homogenous events. To date lots of priority models
covering peak and rush hour (steady state models) behaviors
are computed using the Kendal’s equation. Also, numerical
approximations of models which simplify difficulties in the
analysis of transforms are computed using the integral
equation see Bejan [4]. The Kendal’s era in queuing theory
mathematics marked the beginning of modeling queuing
systems as stochastic process. From trends perspective, we
see that advancements and complications in queuing systems
drive the need for changing focus, analytic techniques and
approaches referenced to the Erlang-Kendal shift.

In 1961, D.C. Little came up with a fundamental
relationship between the averages of three quantities in a
queuing system in what is known in the queuing theory
mathematics as Little’s formula. The formula relates the
behavior of the average number of customers in the system or
in the queue to the average sojourn or waiting time. To date,
the formula is applied in many areas of manufacturing and
service systems as well as in decision making to quantify
expected behaviors of these parameters for better service
delivery.

After these breakthroughs, a lot of sub areas of interest in
queuing theory mathematics continue to emerge especially in
the 40’s. Mathematicians had understood that queuing
problems can be seen in the light of both statistical and
stochastic behaviors. For instance, Franken et al [15]
indicated that in the early 50’°s, mathematicians where faced
with the challenge of developing appropriate mathematical
tools to describe the behavior of sequence of arrivals in a
given system. The first stage of this development was taken by
Conny Palm'” in 1943 and was made mathematically precise
and well expanded by Aleksandr Khinchine ™. In 1955
precisely, Khinchine studied point processes on the positive
real line which he addressed as stream of homogenous events.
This development opened further examination of similar
areas among others including that of insensitivity of queuing
systems ', Here, existence and continuity statements and
relationships between time and stationary quantities with
special inputs were emphasized. This led to the emergence of
a new class of random processes connected with point
processes which seemed most suitable for describing queuing
systems. The new class is termed; random processes with

"Born in Sweden, lived between1907-1951; first paper on queuing
theory in 1936.

18 Khinchine contributions among others include; the
development of an analytic technique for
obtaining the steady state solution of the M/G/1. The
Pollaczec-Khinchine formular is remarkable

in queuing analysis of Poisson arrival uni server systems to date.
' Queues without waiting sense. For instance, the palm model
or any finite capacity queue with

expected arrivals equal to the number of servers.
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embedded marked point process (MPP). The development of
this class of processes was attributed to Khinchine and Kendal
in 1976.

After 1976, queuing theory mathematics, problems,
models and techniques have developed firm mathematical
analysis with ripe continuity statements, relationships and
modeling. This advancement in trends could be argued to be
the driving force behind the discovery of the mobile
telephones and the internet. As IFIP TC6 Working Group 6.3
[21] puts it; That the history of communication systems
research is tightly coupled with the performance evaluation.
Brilliant examples range from A.K. Erlang queuing system
studies applied to dimensioning the telephone network, to
Kleinrock works applying queuing theory to investigate the
packet switching technology which is the foundation of the
internet.

Trends in Queuing Theory Mathematics Today:

The last four decades to date symbolizes an era of model
development as Medhi [33] implies. Queuing theory
mathematicians today seemed more interested in model
development. This era is of modeling and lots of queuing
models are developed. What we witnessed of late is a shift in
paradigm that centers on creating models to capture every bit
of system development, advancement and conjecture, [see
next paragraph for examples]. Models may be classified
under two categories; deterministic models (stable models)
and stochastic models (unstable and heavy traffic). The
methodology today is to pose a problem and model its
transient or limiting behavior. However, it requires the
mathematical analysis of existence of solution so that the
constructed model is realistic.

The central limit theorems and the maximum principle form
the basis for proofing existence of queuing solutions today,
see Whitt [48]. Limit theorems have been developed for
various queuing models (stable and unstable queues) to show
limiting behavior. In the rest of this article, we present
eminent contributions by mathematicians as citations in
various modeling conditions. For instance, the series of
deterministic results obtained over the years on several
models are enormous. Federgruen and Tijms [14] obtained
the stationary distribution of the queue length® for the M/G/1.
Hoksad [19] and [20] worked on a more general queue called
the M/G/m in terms of its limiting state behavior and its
specific case. Smith [40] specified the system performance of
a finite capacity queue called the M/G/C/K. Also, Tijms et al
[46] approximated the steady state probabilities for the
M/G/C queue. In the area of heterogeneous queuing systems,
Boxma et al [8] derived the waiting time asymptotics for the
heterogeneous server M/G/2 with one exponential and one
general server. Sulaiman et al [42] and [43] generalized the
steady state behavior and decay approximations for
(C-1)-exponential servers and a general server of regular
variation modeled of Boxma et al [8]. On the other hand, the
series of papers written by Abate, Whitt, Mandelbrot,
Glynn, Ward, Zwart, Zheng, Boxma, Krishnamoorthy,
Mandelbaum etc among other scholars of queuing theory
[see; Christian et al [9]] provide a new and advanced trend in
studying queuing systems with noise. Today, queuing theory
mathematics has advanced in approach that modeling takes
into account some forms of randomize noises shocking the

20 5 ¢ also Jain and Sigman [24], Boucherie and Boxma [5].
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queue in a measurable sense. This trend advances the
deterministic approach and requires few stability conditions
such as the scaling and dependency conditions.
Unfortunately, it requires some forms of analytic calculus
distinct from the conventional Lesbeque-Riemann calculus, a
unique calculus that adapts the deterministic and the variation
components of queuing systems. Queuing system modeling
uses stochastic calculus nowadays to provide meaning to
queuing system behaviors. The initial fear was that queuing
systems diffuse so slowly that giving them a stochastic
outlook will be an over emphasis. However, recent studies on
diffusion behavior of queuing systems have shown that
approximations exist and are tractable; see David et al [12]
and Christian et al [9]. Equally, the reflected
Ornstein-Uhlenbeck, the geometric Brownian motion, the
reflected Levy and the reflected affine diffusion processes
could be used to model successfully queuing systems with
noisy behaviors such as reneging, balking and shunting
processes which are in effect measurable noises. However,
this shift is not without a price. Certain challenges in form of
relevance, model adaptability, and convenience shall be
overcome to categorically continue queuing theory
mathematics vis-a-via developments in systems engineering
and operations research. In conclusion to this section, even
with these developments, advancements and trends today, the
queuing theory mathematics will continue to change in this
dynamic world of uncertainties and advancements

IV. METHODOLOGY TRENDS TODAY

From methodology point of view, queuing theory
mathematics has seen transformations in trends right from the
time of A.K. Erlang to date. The reason is due to changes in
continuum of queuing traffic, occupation rates, distributions
and available servers. These changes are reflected in the limit
theorems (central and extreme valued) for different models.
Whitt [48] classifies queuing processes as either standard
(light traffic) or growing (heavy traffic) and summarizes limit
theorems for each. In addition, Whitt [48] added that the
initial behavior in methodology was to compute the steady
state solutions via balanced equations of standard models for
server occupation rate below the critical value. This trend was
followed by the computation of time-dependent behaviors in
models though, with some difficulties initially, but later done
with ease. Presently, the behavior today is on growing
processes (heavy traffic) with emphasis on asymptotic
behaviors of models in form of tail probabilities with limit
theorems at the center stage. Limit theorems have been put to
use since 1909 and are fundamental in analyzing both the
extreme and central behaviors of queuing systems. Whitt [48]
classifies limit theorems for queuing models as classical or
functional from the perspective of resulting convergence. The
classical limit theorems consist of the central limit theorem,
the laws of large numbers, the laws of iterated logarithms and
the extreme value theorems. The functional limit theorems
consist of the Donsker theorem for iterated random processes
and the continuous mapping theorems. Basically, limit
theorems inform us on the behavior of a queuing variable by
revealing its statistical regularity under macroscopic view of
uncertainty. The statement of the classical limit theorems
involves obtaining the transient or asymptotic behavior of
some n-dimensional queuing vectors as n grows large or its
associated extreme value sequence. Our survey shows that
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limit theorems (central and extreme) exist for lots of models.
For instance, Glynn and Whitt [17] proved a limit theorem for
heavy traffic queues with general arrival and service time
distributions called the G/G/1. The proof uses strong
approximations under regularity conditions to derive the
maximum waiting time distribution under heavy traffic.
Glynn and Whitt [17] added that the normalization depends
only on the means and the variances of the inter arrival and
service time distribution. Unfortunately, for a fixed value of
the intensity parameter, the maximum waiting time fails to
converge to the Gumbel distribution. In addition, Glynn and
Whitt [17] have shown that the waiting time limit for the
queue in question exist even if the waiting time function fails
to converge for a fixed value of the intensity parameter.
Similarly, for the heterogeneous-server M/G/2 queuing
model, Boxma et al [8] proved the asymptotic limits for the
waiting time distribution for varying size of the arrival rate
compared to the exponential service rate. The modeling
conditions require that the service time distribution of
customers served by the general server has regularly varying
behavior at a known index. Boxma et al [8] have shown that if
the arrival rate is strictly greater than that of the exponential
server, the tail waiting time distribution will have a regularly
varying behavior at infinity at a complementary index of the
service time distribution. For the classical M/G/1 queue with
two  priority classes and non preemptive and
preemptive-resume disciplines, Abate and Whitt [1] derived
these limit theorems. Abate and Whitt [1] proved that the
low-priority limiting waiting-time behavior is a geometric
random sum of independent and identically distributed
random variables like the M/G/1 first come first served (fcfs)
waiting-time distribution. On the asymptotic behavior of tail
probabilities, Abate and Whitt also indicated that there is
routinely a region such that the tail probabilities have
non-exponential asymptotic behavior even if the service time
distributions are exponential. In addition, the asymptotic
behavior of the tail probabilities tends to be determined by the
non-exponential asymptotic behavior for the high-priority
busy-period distribution. On the functional limit theorems for
queuing systems the work of Whitt [48] is worth mentioning.
Whitt [48] summarized functional limit theorems for both
noisy and non-noisy single server queues. Using the open
mapping theorem, Whitt [48] indicated that just as stochastic
functions converges to reflected Brownian motion (Donsker
theorem), a discrete-time queuing model with cumulative
net-input process of stationary increments and jumps of
infinite variance or mean, the central limiting behavior is a
reflected stable process. This limiting distribution can be
computed by numerically inverting its Laplace transform.
However, for a sequence of models (multi systems), the queue
need not be in heavy traffic. The limiting behavior is a
reflected Levy process. In addition, if the jumps are positive
increasing then, the steady-state behavior of the reflected
Levy process can be computed by numerically inverting its
Laplace transform also. Finally, Whitt [48] established that
the functional central limit theorem for the customers in the
queue when the input process is a superposition of many
independent processes with complex dependence, the limiting
input behavior is a Gaussian process. Similarly, for multi
server queues, limit theorems have equally been proved. For
instance, Guodong et al [18] proved the heavy traffic limit
approximations for the queue length distribution in a
multi-server model with Poisson arrival behavior. Using the
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martingale approach involving random time changes and
random thinings of the stochastic queue length process, a key
central limit theorem and a key functional weak law of large
numbers for the popular Palm model and the finite capacity
M/M/C model are respectively established. Interested readers
should refer to the above reference for details. Other central
limit theorems for relevant queuing models under heavy
traffic include Abate [2],..etc.

V. RECENT TRENDS IN QUEUING THEORY MATHEMATICS

The 1980’s and the last decade witnessed two significant
developments in telecommunications engineering; the
invention of the facsimile machine and the internet. These
developments change the nature of queuing theory
mathematics completely. A somewhat new form of traffic
process that exhibits different statistical behavior with the
Poisson process prevalent in early telecommunications
modeling now emerged. The emerging process has a
long-term memory which the Poisson process can not
statistically conserve. Recent day traffic termed data traffic
for instance the internet traffic seems continuous in its arrival
behavior in contrast to the discrete voice calls behavior of the
telephone age. Also, in Medhi’s [33] description, data traffic
do not come in steady rate like the telephone traffic rather, it
has starts and fits with lulls in between. It possesses
long-range dependencies and regularly varying capacities due
to heavy traffic in addition to having large variability in
contrast to the voice traffic which has small distributional
variance. Consequently, the Poisson process becomes less
realistic and limited on this process. This motivates the need
for a realistic trend to tackle the present nature and behavior
of the network traffic which eventually gave rise to the recent
trend in queuing studies. As Florin and Jens [10] observed,
the limitation of the Poisson process motivated the
development of alternative trends in queuing theory over the
past three decades with the emergence of rapid growth of
high-speed data networks. Equally, techniques of analysis that
seemed successful in queuing modeling became almost vague
recently as a result; see Strzalka et al [41]. The relevance of
the emerging trends to tackle the recent day traffic behavior
especially for the internet community has become evident
with the discovery that the internet traffic is fundamentally
different *' from Poisson traffic. It is this necessity to
overcome the Poisson assumption limitation that produced
the heavy traffic and diffusion approximation recently in
queuing theory. Though, approximating a discrete-time
stochastic process by a diffusion process is not new,
application into queuing theory is of recent origin (beginning
of the 70’s). The support for this behavior and trend is the
work of Kingman [27] on a general queue called the G/G/1.
The result is called the central limit theorem for queuing
theory, see Medhi [33].

! The Poisson suitability argument for the internet and
similar processes still holds good. Boxma and Cohen in [6]
observed that, in both LAN and WAN traffic, bursty
sub-periods are alternated by less bursty sub-periods,
indicating the coexistence of the Poisson traffic and self
similar traffic processes see also Karagianis et al [24]. Most
importantly, the argument gave rise to another significant
model of analysis.
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5.1. Data Traffic
Mathematics:

Data traffic analysis is synonymous to heavy traffic analysis.
Heavy traffic approximations in queuing theory mathematics
started with the work of Kingman [27] on a general arriving
and service time queuing model called G/G/1 queue.
Kingman [27] proved that for the G/G/1 queue under heavy
traffic, the waiting time distribution could be approximated by
an exponential distribution. Kingman made a conjecture for
the seemingly more interesting multi-server G/G/C queue. He
conjectured that the waiting time distribution could similarly
be approximated by an exponential distribution. In 1974,
Kollerstrom [29] proved the conjecture to affirm that the
waiting time distribution for such queue is an exponential
distribution.

On the other hand, the diffusion approximation for heavy
traffic queuing systems came to light in the works of Iglehart
[22], Gaver [16] and Newell [35]. It involves approximating
the limit of a sequence of stochastic queuing variables (heavy
traffic) as a Brownian process (diffusion). Guadong et al [18]
indicated that Iglehart established the first limit theorem for
the palm model via diffusion approximations and Gaver [16]
considered the technique for certain congestion problems in
1968, see Medhi [33]. In 1970, Iglehart and Whitt [23]
justified the suitability of the diffusion approximation for
queuing variables by establishing a limit theorem for the
G/G/C queue. The theorem proved that both the queue length
and the waiting time distributions could be approximated by a
Brownian motion process. In 1974, Reiser and Kobayashi
[39] studied the accuracy of the diffusion approximation on
some networks of queuing systems. The accuracy was
considered for a wide class of distributional forms of inters
arrival and service times for various models. Reiser and
Kobayashi [39] concluded similar to Iglehart and Whitt [23]
that the diffusion approximation is quite adequate in most
cases, more adequate than the exponential server model
prevalent in computer system modeling. Since then, several
models have been developed to approximate performance of
systems in the form of tail probabilities, extreme behavior,
moments and distributions using the diffusion approximation.
For instance, see Glynn and Whitt [17]. Similarly, Abate and
Whitt [2] approximated the asymptotic decay rates of the
queue length and customer service distribution in form of tail
probabilities for a multi-channel queue under heavy traffic.
The result shows that, both the queue length and the service
time distributions depend on the first 3 moments of their
distributions. Data traffic in telecommunications queuing
systems  possesses  long-range  dependencies  and
self-similarity, see Medhi [33]. Recently, measuring, analysis
and modeling of self-similar behavior has been one of the
main research challenges. In the last couple of years, several
studies have been carried out, see Yu et al [49]. More
recently, Nakashima [34] worked on the queue length
behavior on restricted link under busty self-similar
Transmission Control Traffic (TCP). It was shown that the
queue length distribution is long tailed. Christian et al [9]
derived the diffusion limits for queues under shortest
remaining processing service time distribution, see [9].
Another aspect of network traffic behavior has also appeared.
In this case, the network traffic behavior is researched from
application or data source point of view with focus on
statistics of file sizes and inter-arrival times between files, see
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Park et al [37]. These research works are very important for
describing the relation between packet network traffic on
lower ISO/OSI layers® and data source network traffic on
higher layers of ISO/OSI model. Based on the research of the
World Wide Web network traffic, Crovella and Lipsky [11]
have shown that file sizes of such traffic are best described by
Pareto distribution with a unit shape parameter. Also, for the
FTP traffic, the shape parameter lies in the set [0.9, 1.1],
see Paxon and Floyd [38]. Finally, Nuzman et al. [36] have s
hown that interarrival time of transmission control protocol (
TCP) connections are self similar in behavior which can be
described by Weibull heavily tailed distribution. In 2012,
quite a number of researches covering heavy traffic and
diffusive behaviors of queuing systems have been published
notably; Stralka et al [41] on queue performance in the
presence of long- range dependencies and Florens and Jens
[10] observed network calculus under no free lunch and
concluded that the future still holds good value for network
calculus and finally, David et al [12] derived the diffusion
approximation to a single server queue in an airport. The
phenomenon of self similarity in heavy traffic and diffusive
queuing system together with that of long range
dependencies have been a subject of recent studies as Medhi
[33] indicates. The pioneer of this trend is Kolmogorov and
Mandelbrot and Co, see Mandelbrot [31]. Self similar traffic
processes possess fractal features in both time and space
scales and as Erramilli et al [13] pointed out, there is a
considerable scope for future research in this area of fractal
queuing theory®. This is the most recent behavior in this field
and without doubt will be significant in addressing teletraffic
issues in the future. Other emerging trends in queue
mathematics include the analysis of new queue disciplines.
The pioneering work of Krishnamoorthy [25] provides a base
for constructing and analyzing these queue disciplines.
Similarly, new works on the mathematics of queue schedules
are gaining grounds. For a full discussion on this kind of
mathematics see Alexander et al. [3], Sivasamy et al. [44] ,
etc. for details. What this entails is that this kind of
mathematics will continue to grow and be relevant for
operational purposes. This is generally the purpose of
operations research, itself a new branch of mathematics.

CONCLUSIONS

In this article, trends in queuing mathematics are studied.
From evolutionary trends to challenges necessitating
changing trends were surveyed from inception in 1909 to date
to reveal how advances in system engineering or operations
research transforms study dimensions and behaviors in terms

22 OSI means Open Systems Interconnection. It is a standard
description on how messages should

be transmitted between any two points in a telecom network.
Its purpose is to guide product imple-

mentors so that their products will consistently work with
other products. ISO means International

Standards Organization, a traditional model for representing
communications protocols.

 The fractional queuing theory dimension mostly shows the
convergence of queueing processes such as the arrival process
to fractional Brownian motion. It is really interesting to see
queueing studies in this light.
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of problems formulations, technique of analysis, results and
modeling. Initially, we looked at areas of challenges
necessitating trend transformations. Trends in Methodology
were also identified and recent areas of interest arising from
system developments for instance, data traffic science was
discussed. Finally, the most recent trend of fractal queuing
theory mathematics especially in teletraffic and
communications engineering was discussed. Finally, an
emerging trend that emphases the analysis of queue discipline
for heterogeneous server systems was introduced. We
conclude this article by emphasizing the need for mixing
trends in analyzing complex behaviors with diffusion
approximation, fractal queue mathematics at the center.
Approaching queue mathematics in a mixed mode will
simplify lots of challenges in this interesting field of
mathematics of operations research.
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