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I. INTRODUCTION

Structures on differentiable manifolds by introducing vector-
valued linear functions satisfying some algebraic equations
have been studied by a number of mathematicians. K. L.
Duggal in [1] defined on a differentiable manifold
Hsu-structure which is more general than almost complex ,
almost product and almost tangent structures.

Let there be defined on Vn , avector valued linear function F
of class C such that

F’=a'l, 0<r<n
where r is an integer and a is real or imaginry number. Then F
is called Hsu — structure and ¥, is called the Hsu — structure

manifold.
Let M be a n-dimensional differentiable manifold of class

C” . A vector-valued linear function F of class C” is
defined on M such that

F'(X)=a X (1.1)
where X is an arbitrary vector field and a is any real or purely

imaginary number. Then F is said to give a differentiable
structure called Hsu-structure on M Defined by (1.1). If

1y 1y
aé # 0 we have the known 7T -structure [3], if aé =0
T,
we have an almost tangent structure. For a/ =1 or

p
aé =++/—1 we obtain an almost product or almost
complex structure respectively.

Suppose further that M admits a Hermitian metric g
satisfying
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g(X,Y)+a" g(X,Y)=0 (1.2)

where X = FX and X, Y are vector fields on M. Then , we
say that ( g, F ) gives to M an H-structure and M is called
K-manifold.

If the structure tensor F is parallel (ie. (V /)Y =0

where V is the Riemannian connection ), then M is called
K-manifold.

An H-structure manifold M will be called nearly
K-manifold (briefly NK-manifold) if the structure tensor F
satisfies the condition (V , F')X =0, for arbitrary vector
field X on M.

In the present article we deal with some 2m-dimensional
H-structure manifolds. In the next paragraph we shall study an
H-structure  manifold admitting pointwise constant
holomorphic sectional curvature . In the later we obtain the
main result of the present paper on NK-manifolds.

II. ON H-STRUCTURE MANIFOLDS

On a 2m-dimensional H- structure manifold M we consider a
(0, 2) tensor such that

$(X.Y) = g(X,Y)=—g(X.Y) @.1)

It is easy to prove that the following results
dX,Y)+¢(Y,X)=0 (2.2)
H(X,Y)+a" $(X,Y)=0 2.3)
Vi)Y, 2)+(V 9)Z,Y)=0 (2.4)
(V. $(Y.Z)=a"(V §(Y,Z) (2.5)

We denote by (W,X,Y,Z)=g(V,F)X,V,F)Z

and because of (2.2), (2.3) we obtain
w,X,Y,2)=X,ZW,X)
W,X,Y,Z)=-a"(W,X,Y,Z)

_ _ (2.6)
(W,XJYDZ) :_(W,XJYDZ)

We assume that the curvature tensor R is defined by
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R(X,Y)Z =V, Z~[V .V, 1Z

and
RW,X,Y,Z)=g(RW,X)Y,Z)
for arbitrary vector fields W,X,Y and Z on M.
The holomorphic sectional curvature H(x) is defined by

H(x) = R(x,x,%,%)/ g(x,2)g(x,x) @7
for xeT,(M),(p € M) where T, (M) is the tangent space of M at p.

Theorem 2.1
Let M be an H-structure manifold of pointwise constant holomorphic sectional curvature c(p) . Then
4a"c(p)2¢(x, y)p(z, W) = p(x, WP (¥, 2) + ¢(x, 2)p(y, W) + a" g(x, w)g(y,2) — a" g (x,2)g(y, w)]
=-3a""R(w,x,,z) - 3R(v_v, )_c,;/, ;) + arR(v_v, X, v,z)+a R(w, x,)_/,g) - a’R(v_v, x,;, z)
+ SarR(v_v, X, ¥, 2) +3a" R(w, X, ;/, z)—a" R(w, X, y,;) +3a"R(w, y,x,2) + 3R(v_v, ;/, x, E)
- a"R(v_v, ;/, x,z)—a R(w,y, )_c, E) + arR(v_v,y, )_c, z)— 3a"R(v_v, V, X, E) - Sa’R(W,;,)_c, z)
+a" R(w, ;, X, 2)

2.8)

Proof : Since H(x) = c(p), (2.7) takes the form

R(x,;,x,;) =c(p)g(x, x)g()_c,;) (2.9)

By linearizing (2.9) and using Binachi identity , we get

da’c[g(x,y)g(z,w)+ g(x,2)g(y,w) + g(x,w)g(y,2)

= R(w,x,,2) — 2R(W, X, y,2) + R(W, X, p,2) + R(W, X, , ) o0

—2R(w, )_c, y,g) + R(w, x, ;, E) + R(J/, ;, X,z)— 2R(v_v, V,X,Z)
+ R(w,y,x,2) + R(w, y,x,2) = 2R(w,y,x,2) + R(W,y,x,2)

In (2.10) we replace Y and W by)_’ and W and in the resulting equation we replace X and Y by Y and X respectively . Adding

the last two equations we obtain (2.8).
We can choose

{E . E LE, s ,E,, such that E

sHmo

orthonormal frame field

an
= V1E, /a7 i = sy

m+12 m+i

We denote by k and k" the Ricci tensor and the Ricci” tensor of M , respectively. The Ricci” tensor £~ is defined by
k*(x,y) = traceof (z — R(z,x)y)
for x,y,zeT,(M).

Lemma 2.2
If M is an H-structure manifold and {£| } is an orthonormal frame field , for arbitrary vector fields X, Y on M we have
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2m _ _ 2m
ZR(X,E;‘,Y,E[) z_arZR(X$EiaY7Ei)
i=1 i=1

2m

> R(X.E.Y,Ei)=-Y R(X,E:.Y,E,)
i=1

Proof : The proof depends on the above way of the determination of the orthogonal frame field {£ l.} .

We can easily prove the following.

Lemma 2.3
Let M be an H-structure manifold . Then for arbitrary vector fields X, Y on M. We have

K(X,Y)=k(Y,X), k" (X,Y)=—a"k" (Y, X), k" (X,Y)=—k" (¥, X)

We denoteby § and s~ the scalar and the *scalar curvature of M respectively. Then, using the theorem 2.1 and the lemma
2.2 and 2.3 we obtain .

Proposition 2.4
Let M be a 2m —dimensional H-structure manifold of pointwise constant holomorphic sectional curvature c(p). Then , for
arbitrary vector fields X, Y on M, we have

a'k(X,Y) k(X,Y)=3[k"(X,Y)+k" (Y, X)]=4(m+1)c(p)a g(X,Y)
a"s—3s" =4m(m+1)a"c(p)

The main result of the second paragraph ( theorem 2.1 and proposition 2.4) for @” = —1 have been obtained by G.B.Rizza in
[4] (fundamental identity (11) and theorem 1).

3. ON NEARLY K-MANIFOLDS
We denote by (W, X,Y,Z)=g((V, F)X,(V,F)Z). By definition of the NK-manifold and the curvature tensor R we
obtain that : RW,X,Y,Z)-RW,X, ?, 7) depends on the quantities
W,X,Y,2),W.Y,X,Z),W,Z,X,Y),W,X,Y,Z),W,Y,X,Z)and (W,Z,X,Y). Applying the fundamental
properties of R(W, X, Y, Z) we obtain .

Proposition 3.1
Let M be a NK-manifold. If W, X, Y and Z are arbitrary vector fields on M, then

RW,X,Y,Z) =%[Z(W,X,Y,Z)+(W,Y,X,Z)—(W,Z,X,Y)]
a f—

1

ROW,X,Y,Z)

3a% 20V, X.,Y,Z)~(W.Y,X,Z)+ W.Z,X,Y)]

Using the proposition 3.1 and the definitions of the Ricci tensor and the Ricci”tensor we get the following .

Lemma 3.2
For arbitrary vector fields X and Y on a NK-manifold it holds :

2m
k(XaY):;Z(XaEMY,Ei)
a’ _3 i=1
kK(X,Y)=—-a"k(X.,Y), k'(X,Y)=k'(Y,X)
K (XY) = a"k(X.Y)
a -3
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By virtue of the first relation of proposition 2.4, the lemma 3.2 and [2] (p.292) we can obtain the main result :

Theorem 3.3

If M is a 2m-dimensional connected NK-manifold of pointwise constant holomorphic sectional curvature , then M is an
Einstein manifold .

For NK-manifolds of small dimension we can state the following .

Proposition 3.4
A NK-manifold M of dimension n = 2,4 is a K-manifold.

Proof:
It is clear that a 2-dimensional NK-manifold is a K-manifold.
If M is a 4-dimensional NK-manifold, we choose an orthonormal frame field on an open subset of M to be of the from
NN
EI,EV2 —r/El,7E2
a’? a’?

We can easily prove that (V ; F')E), is perpendicular to £} and E, . Because of

(V9)Y,Z)=a"(V $)Y,Z)=—a’ (V $)(Z,Y)

A=1—= A=1=
It is proved that (V 5 F )E, is perpendicular to ——— E1 and —— E>.

Hence

(Vo F)E, =0, (i,j=12)
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