International Journal of Engineering Research And Management (IJERM)
ISSN : 2349- 2058, Volume-02, Issue-02, February 2015

Design Optimized Framework for Migrating a Legacy
System to Cloud Environment

C.Udaya Shankar, P.T.Ajith, N.Naveen Kumar, S.Pushpalatha

Abstract— Cloud computing have attracted more and more
enterprises to migrate their legacy applications to the cloud
environment because of its high-scalability, on-demand nature.
Although the cloud platform itself promises high reliability,
ensuring high quality of service and high reliability is still one
of the major concerns, since the enterprise applications usually
consist of a large number of distributed components. Thus,
improving the reliability of an application during cloud
migration is a challenging and critical research problem. To
address this problem, we propose a reliability-based Reliability
Optimization Cloud (ROCloud) and consider all the constraint
factors such as cost, etc., to improve the application reliability
by fault tolerance. ROCloud includes two ranking algorithms.
The first algorithm performs ranking of all the components, for
an application, that will be migrated to the cloud. The second
algorithm ranks components for hybrid applications that only
part of their components are migrated to the cloud. Both
algorithms employ the application structure information as well
as the historical reliability information for component ranking.
Based on the ranking result, optimal fault-tolerant strategy will
be selected automatically for the most significant components
with respect to their predefined constraints. The experimental
results show that the reliability of the application can be greatly
improved by refactoring a small number of error-prone
components and tolerating faults of the most significant
components

Index Terms— Cloud migration, component ranking, fault
tolerance, software reliability

[. INTRODUCTION

Cloud computing enables convenient, on-demand
network access to a shared pool of configurable computing
resources. In the cloud computing environment, the
computing resources (e.g., networks, servers, storage, etc.)
can be provisioned to users on-demand. Startup companies
can deploy their newly developed Internet services to the
cloud without the concern of upfront capital or operator
expense [5]. However, cloud computing is not only for
startups, its cost effective, high scalability and high reliability
features also attracted enterprises to migrate their legacy
applications to the cloud [23]. Before the migration,
enterprises usually have the concern to keep or improve the
application reliability in the cloud environment. Thus,
reliability-based optimization when migrating legacy

Manuscript received February 04, 2015.

C.Udaya Shankar, Department of Information Technology, Jeppiaar
Engineering College,Chennai-119.

P.T.Ajith, Department of Information Technology, Jeppiaar Engineering
College, Chennai-119.

N.Naveen Kumar, Department of Information Technology, Jeppiaar
Engineering College, Chennai-119.

S.Pushpalatha, Assistant Professor, Department of Information

Technology, Jeppiaar Engineering College, Chennai-119.

applications to the cloud environment is becoming an
urgently required research problem.

There are four major approaches in traditional software
reliability engineering to improve system reliability: fault
prevention, fault removal, fault tolerance, and fault
forecasting.

Since the applications deployed in the cloud are usually
complicated and consist of a large number of components,
only employing techniques for fault prevention and fault
removal are not sufficient. Another approach for building
reliable systems is software fault tolerance, which is to
employ functionally equivalent components to tolerate faults.

Software fault tolerance approach takes advantage of the
redundant resources in the cloud environment, and makes the
system more robust by masking faults instead of removing
them.

Although the cloud platform is flexible and can provide
resources on-demand, there is still a charge for using the
cloud components (e.g., the virtual machines of Amazon
Elastic Compute Cloud or Simple Storage Service). It will be
expensive to provide redundancies for each component,
since legacy applications usually involve a large number of
components. To reduce the cost so as to assure highly
reliability in a limited budget during the migration of legacy
applications to cloud, an efficient reliability-based
optimization framework is needed. Compared with newly
developed applications, the reliability-based optimization of
legacy applications has the following difficulties:

A.The failure rate of different components in a legacy
application can vary. For example, some components in
the legacy application are implemented by out-dated
technology and have not been well maintained. These
components can have great impact on application
reliability. But they may not be selected as significant
component by FTCloud, since FTCloud only employs
structure information and does not take component
failure rate information into consideration.

B.FTCloud needs expert knowledge to manually designate
critical components. However, the migration team may
not be the creator of the legacy application. So it will be
difficult for them to manually list the critical components.
Furthermore, the number of legacy applications as well as
the number of components in these applications is large;
it is thus impractical to manually identify critical
components.

C.

D.Some applications may be restricted by enterprise security
polices and only part of their components can be migrated
to the cloud. Algorithms shall take these into account.

24 www.ijerm.com

Design Optimized Framework for Migrating a Legacy System to Cloud Environment

Legacy Application

Cloud Application

Design
Optimization
Cloud Migration

S od -

Private Data Center

Fig. 1. Cloud migration example.

For these two reasons, FTCloud is not sufficient for
improving the reliability of legacy applications. We need to
take advantage of all materials of the legacy applications at
hand, such as application logs, source code, etc. to
automatically identify the components whose failures have
great impact on the application reliability. Then provide
backups for them using redundant resources in the cloud to
improve the application reliability.

Based on this idea, we proposed Reliability-based
Optimization in Cloud environment (ROCloud), which is a
component ranking framework based on historical
information to identify the significant components that have
great impact on application reliability, and suggest optimal
fault tolerance strategies automatically. ROCloud can help
the designer optimize legacy application design to get a more
reliable and robust cloud application effectively and
efficiently.

The contribution of this paper includes:

This paper presents a design optimization frame-work for
the cloud migration, named ROCloud. The main idea of this
framework is first to identify significant components whose
failures can have great impact on application reliability based
on the application structure information and components
reliability properties, and then provide fault-tolerant
mechanism for these components to improve application
reliability.

a) ROCloud includes two ranking algorithms. The first
algorithm ranks components for the applications that all their
components can be migrated to the cloud. The second
algorithm ranks components for hybrid applications that only
part of their components can be migrated to the cloud.

b) We conduct extensive experiments to evaluate the
impact of significant components and their reliability
properties on the reliability of the migrated application using
reliability information of real-world Web services.

The rest of this paper is organized as follows. Section 2 lists
the optimization challenges in cloud migration and proposes
a three phase framework. Section 3 illustrates the details of
the optimization framework. Section 4 concludes the paper,
Section 5 includes references.

25

II. OPTIMIZATION FRAMEWORK FOR CLOUD
MIGRATION

A. Optimization Challenges in Cloud Migration

First, we use a motivating example to show the challenging
problems of this paper. Enterprise A wants to reduce upfront
capital investment and system infrastructure maintenance
effort. The cloud computing technology satisfies these
requirements. Enterprise A decides to migrate its legacy
applications to an IaaS cloud, as shown in Fig. 1. The legacy
application consists of a number of distributed components.
Ensuring reliability of the application is one of the major
concerns for making the migration.

To enhance the system reliability, the designer wants to
optimize the original design of legacy application by
providing fault tolerance mechanisms for its components
with replication techniques. When designing fault tolerance
mechanisms for the components, the designer needs to
consider the following problems:

a) Some components of the legacy application may be
implemented by outdated technology and suffer from high
failure rates. These components can have great impact on
system reliability. Replication techniques are not enough to
improve the reliability. For example, providing one
replication for a component with failure rate 50 percent can
only reduce the failure rate to 25 percent which is still
unacceptable. A better approach is refactoring, that is to
adopt new technology to rewrite the component and add fault
prevention logic (e.g., exception handling), which can
dramatically reduce the component’s failure rate. Trade-offs
need to be made when considering which components should
be re-factored due to cost constraints.

b) The legacy application may consist of a large number
of components. It is too expensive to deploy alternative
replicas for all the components, since there are costs for using
cloud resources (e.g., the virtual machines). To make
trade-offs between costs and reliability, the designer chooses
to tolerate faults of the most important components, whose
failures have great impact on the whole system. However, it
is not easy to identify which components have greater impact
on system reliability, because:

o The reliability properties of each component may be
very different. Some components may already have fault
prevention logic (e.g., error checking, exception handling,
etc.) and thus are more reliable than others.

o Failures of different components can have different
impacts on the system. Components fulfilling critical tasks
(e.g., payment) are taken as critical components, while other
components accomplishing non-critical tasks (e.g., providing
decorative pictures on web pages) are taken as non-critical
ones [48]. Failures of critical components have greater
impact on the system than failures of non-critical
components.

www.ijerm.com

International Journal of Engineering Research And Management (IJERM)
ISSN : 2349- 2058, Volume-02, Issue-02, February 2015

These two characteristics should be considered in
combination. A failure-prone non-critical component may
have little impact on overall system reliability, while a
component for critical task may be carefully designed and
already have low enough failure rate. The straightforward
approach to only consider components with high failure rates
or fulfilling critical tasks as important components may not
lead to an optimal solution.

¢) Some applications are restricted by enterprise security
polices and only part of their components can be migrated to
the cloud. For these hybrid applications, the components
which are kept in the private data center are potentially
important components and they can only use resources in the
private data center for fault tolerance.

d) There are a number of fault tolerance strategies. The
cloud platform itself may also provide recovery approaches
such as virtual machine restart. Different strategies have
different overheads and costs. It is a challenging task for the
designer to find out the optimal fault tolerance strategies for
the significant cloud components.

To address the above problems, we first analyze the legacy
application to collect the reliability properties and
application structure information. Then, we proposes two
significant component ranking algorithms in Section 3.2. At
last an optimal fault tolerance strategy selection algorithm is
presented in Section 3.3.2, which suggests optimal fault
tolerance strategies for components with different
constraints.

B. Optimization Framework

Fig. 2 shows the overview of our reliability optimization
framework (named ROCloud), which includes three phases:
1) legacy application analysis; 2) automated significance
ranking; and 3) fault tolerance strategy selection. The
processes of each phase are as follows:

a) Both structure and failure information are extracted
during the legacy application analysis phase. The structure
information extraction consists of two sub-processes:
component extraction and invocation extraction. The failure
information including failure

rate and failure impact are collected from the execution
logs and test results of the legacy application. Components
with a failure rate higher than the threshold will be
re-factored, and their reliability properties will be updated. A
component graph is built for the legacy application based on
the structure as well as the failure information.

b) In the automated significance ranking phase, two
algorithms are proposed for ordinary applications that can be
migrated to public cloud and hybrid applications that need to
be migrated to hybrid cloud, respectively.

III. APPROACH

Optimization Framework approach has three modules:

a) Legacy application analysis,

b) Automated significance ranking,
c) Fault tolerance strategy selection.

The processes of each phase are as follows:

a) Both structure and failure information is extracted
during the legacy application analysis phase. The structure
information extraction consists of two sub processes:
component extraction and invocation extraction. The failure
information including failure rate and failure impact are
collected from the execution logs and test results of the
legacy application. Components with failure rates higher than
the threshold will be re-factored and reliability properties are
updated. A component graph is built for the legacy
application based on the structure as well as the failure
information.

b) In the automated significance ranking phase, two
algorithms are proposed for ordinary applications that can be
migrated to public cloud and hybrid applications that need to
be migrated to hybrid cloud, respectively.

c) The performance, overhead, and cost of various fault
tolerance strategy candidates are analyzed and the most
suitable fault tolerance strategy is selected for each
significant component based on its predefined constraint.

A. Legacy Application Analysis

The structure information includes components and the
invocation information. The components are extracted from
legacy applications by source code and documentation
analysis. The invocation information such as invocation links
and invocation frequencies can be identified from application
trace logs. Source codes and documentations are useful
supplementary materials in addition to trace logs. All the
information are represented in a component graph. In this
paper, the main optimization goal is reliability, so a more
straightforward way is employed to determine which
components should be re-implemented: components with
failure rates greater than a threshold. The selection of the
threshold is dependent on project budget and the target
application failure
rate.

(1) Legacy Application Analysis

Structure Information Extraction

(2) Automated Rakig

4 : (3) Fault Tolerance
Significance Ranking || Result

Component g
Strategy Selection

Invocation Graph
Extraction

Component

Extraction Ranking Strategy

Components for Characteristic
» | Public Cloud Analysis

Reliability Property Extraction

Ranking Optimal FT

Components for

; Strategy
Hybird Cloud

Selection

Failure Rate &
Failure Impact
Extraction

Optimized
Design

Components
Refactoring

e e
Fig. 2. Overview of the optimization framework

Designer

26 www.ijerm.com

Design Optimized Framework for Migrating a Legacy System to Cloud Environment

After refactoring, the component failure rates will be
estimated based on test results, and the component reliability
property dataset will be updated.

B. Automated Significance Ranking

Based on the component graph, two component ranking
algorithms are proposed in this section. The first algorithm
ranks components for ordinary applications where all their
components can be migrated to the cloud. The second
algorithm rank components for hybrid applications which
can be partly moved to the cloud. In a distributed application,
the failures of the components which are frequently invoked
by many other components tend to have greater impact on the
system compared with the components which are rarely
invoked by others.

Thus these components are considered to be more
important from the reliability aspect and should be ranked at
the front of component list. Inspired by the Page Rank
algorithm, we propose an algorithm to calculate the
significance value of each component of the migratory
application employing the component invocation
relationships and reliability properties.

Based on the component graph and component reliability
information, the component ranking algorithm includes the

following steps:

1. Initialize by randomly assigning a numerical value
between 0 and 1 to each component in the component graph.

2. Compute the significance value for a component c; by:

L- df[-.‘,‘i:];(.lf!’:;) +d Z

ReN(e

V(e) =

V(ep)w,
n \

With the above approach, the significance values of the
components can be calculated by considering the application
structure information, the invocation relationships, and the
knowledge of component reliability properties in
combination. A component with a larger significant value is
considered to be more significant. The failures of these
significant components will have great impact on other
components and thus tend to cause application failures.

C. Fault Tolerance Strategy Selection

Software fault tolerance is widely adopted for critical
systems (e.g., airplane flight control systems, nuclear power
station management systems, etc.). At the same time, a cloud
platform also provides approaches such as virtual machine
restart, virtual machine migration, etc. to improve
components reliability. By employing these techniques to
provide functionally equivalent components, the component
failures can be tolerated and thus the overall system
reliability can be increased. Three well known software fault
tolerance strategies as well as the approaches taking
advantage of cloud platform features are introduced in the
following with formulas for calculating the failure rate,
response time and resource cost.

27

CONCLUSION

This paper presents a reliability-based design optimization
framework for migrating legacy applications to the cloud
environment. The framework consists of three parts: legacy
application analysis, significant component ranking and
automatic optimal fault-tolerant strategy selection. Two
algorithms are proposed in the ranking phase: the first ranks
components for the applications where all the components
can be migrated to the cloud; the second ranks components
for the applications where only part of the components can be
migrated to the cloud. In both algorithms, the significance
value of each component is calculated based on the
application structure, component invocation relationships,
component failure rates, and failure impacts. A higher
significance value means the component imposes higher
impact on the application reliability than others. After finding
the most significant components, an optimal fault-tolerant
strategy can be selected automatically with respect to the
time and cost constraints.

In ROCloud, each component is considered as independent
and the fault-tolerant strategy selection is carried out on
component basis. In the future, we will study the fault
tolerance of interrelated components. In addition, ROCloud
uses the ratios of component failure to application failure to
measure the failure impact of components. While the
relationship between component failures and application
failures can be complicated, more sophisticated models (e.g.,
Markov models, fault trees, etc.) will be investigated in the
future work.

Our future work also includes:

1. Considering more factors (such as data transfer,
invocation latency, etc.) when computing the weights of
invocations links.

2. Taking the constraint factors such as cost into
consideration during the ranking phase, and letting the
designer know intuitively which components can make the
biggest improvement while cost the least.

More experimental analysis on ROCloud and the impact of
in-correct prior knowledge such as invocation frequen-cies
and component failure rates.

REFERENCES

[1] S. Al-kiswany, D. Subhraveti, P. Sarkar, and M. Ripeanu,
““VMFlock: Virtual Machine Co-Migration for the Cloud,”” in

Proc. 20th Int. Symp. High Perform. Distrib. Comput., New York, NY,
USA, 2011, pp. 159-170.

A.A. Almonaies, J.R. Cordy, and T.R. Dean, ‘‘Legacy System
Evolution Towards Service-Oriented Architecture,”” in Proc. Int.
Workshop SOAME, Madrid, Spain, Mar. 2001, pp. 53-62.

G. Anthes. (). Security in the Cloud. Commun. ACM [Online].

M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,

G.Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, ‘‘A View of
Cloud Computing,”” Commun. ACM, vol. 53, no. 4, pp. 50-58, 2010.
M. Armbrust, A. Fox, R. Griffith, AD. Joseph, R.H. Katz, A.
Konwinski,

G.Lee, D.A. Patterson, A. Rabkin, 1. Stoica, and M. Zaharia, ‘‘Above the
Clouds: A Berkeley View of Cloud Computing,”” EECS Dept., Univ.
California, Berkeley, CA, USA, Tech. Rep. EECS-2009-28, 2009.
A. Avizienis, ‘“The Methodology of N-Version Programming,’” in
Software Fault Tolerance, M.R. Lyu, Ed. Chichester, U.K.: Wiley,
1995, pp. 23-46.

V. Batagelj and A. Mrvar, ‘‘PajekVPajek: Analysis and Visualization

(2]

[3]
(4]

[5]

(6]

(7]

www.ijerm.com

International Journal of Engineering Research And Management (IJERM)
ISSN : 2349- 2058, Volume-02, Issue-02, February 2015

of Large Networks,”” Graph Drawing Softw., vol. 21, pp. 47-57,
2003.

[8] N. Bonvin, T.G. Papaioannou, and K. Aberer, ““A Self-Organized,
Fault-Tolerant and Scalable Replication Scheme for Cloud Storage,””
in Proc. Ist ACM Symp. Cloud Comput., ser. SoCC’10, New York,
NY, USA, 2010, pp. 205-216.

[91 S. Brin and L. Page, ‘‘The Anatomy of a Large-Scale Hypertextual
Web Search Engine,’” in Proc. 7th Int’l Conf. WWW, 1998, pp. 1-20.

[10] C. Cachin, L. Keidar, and A. Shraer. (). Trusting the Cloud. SIGACT
News [Online]. 40(2), pp. 81-86. Available: http:/doi.
acm.org/10.1145/1556154.1556173

[11] M. Creeger, ‘‘Cloud Computing: An Overview,”” ACM Queue, vol.
7,no0. 5, pp. 1-5, June 2009.

[12] A.P.S. de Moura, Y.-C. Lai, and A.E. Motter, ‘‘Signatures of
Small-World and Scale-Free Properties in Large Computer
Programs,’’ Phys. Rev. E, vol. 68, p. 017102, 2003.

[13] J. Dean and S. Ghemawat, ‘‘Mapreduce: Simplified Data Processing
on Large Clusters,”” Commun. ACM, vol. 51, no. 1, pp. 107-113,
Jan. 2008.

[14] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A.
Lakshman,

A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, ‘‘Dynamo:
Amazon’s Highly Available Key-Value Store,”” in Proc. 21st ACM
SIGOPS Symp. Oper. Syst. Principles, ser. SOSP ’07, New York,
NY, USA, 2007, pp. 205-220.

[15] C.-L. Fang, D. Liang, F. Lin, and C.-C. Lin, ‘‘Fault Tolerant Web
Services,”” J. Syst. Architure, vol. 53, no. 1, pp. 21-38, 2007.

[16] S.S. Gokhale and K.S. Trivedi, ‘‘Reliability Prediction and
Sensitivity Analysis Based on Software Architecture,”” in Proc.
ISSRE, 2002, pp. 64-78.

[17] F. Hao, T.V. Lakshman, S. Mukherjee, and H. Song, ‘‘Enhancing
Dynamic Cloud-Based Services Using Network Virtualization,”” in
Proc. 1st ACM Workshop Virtualized Infrastruct. Syst. Archit., ser.
VISA’09, New York, NY, USA, 2009, pp. 37-44.

[18] D.Hyland-Wood, D. Carrington, and Y. Kaplan, ‘‘Scale-Free Nature
of Java Software Package, Class and Method Collaboration
Graphs,”” in Proc. 5th Int’l Symp. Empirical Softw. Eng., 2005, pp.
439-446.

[19] K. Inoue, R. Yokomori, T. Yamamoto, M. Matsushita, and S.
Kusumoto, ‘‘Ranking Significance of Software Components Based
on Use Relations,”” IEEE Trans. Softw. Eng., vol. 31, pp. 213-225,
Mar. 2005.

[20] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and

A. Goldberg, ‘“‘Quincy: Fair Scheduling for Distributed Computing
Clusters,” in Proc. ACM SIGOPS 22nd Symp. Oper. Syst.
Principles, ser. SOSP *09, New York, NY, USA, 2009, pp. 261-276.
[Online]. Available: http://doi.acm.org/10.1145/1629575.1629601

[21] F. Kamoun, ‘‘Virtualizing the Datacenter Without Compromis-ing
Server Performance,”” Ubiquity, vol. 2009, p. 2, Aug. 2009.

[22] A. Kertesz, G. Kecskemeti, and I. Brandic, ‘‘An Sla-Based Resource
Virtualization Approach for On-Demand Service Provi-sion,”” in
Proc. 3rd Int. Workshop Virtualization Technol. Distrib. Comput.,
ser. VIDC’09, New York, NY, USA, 2009, pp. 27-34.

[23] A. Khajeh-Hosseini, D. Greenwood, and 1. Sommerville, ‘‘Cloud
Migration: A Case Study of Migrating an Enterprise IT Sstem to
laaS,”” in Proc. IEEE 3rd Int. Conf. CLOUD, 2011, pp. 450-457.

[24] K. Kim and H. Welch, “‘Distributed Execution of Recovery Blocks:
An Approach for Uniform Treatment of Hardware and Software
Faults in Real-Time Applications,”” IEEE Trans. Com-put., vol. 38,
no. 5, pp. 626-636, May 1989.

[25] H.A. Lagar-cavilla, J.A. Whitney, A. Scannell, P. Patchin, S.M.
Rumble, E.D. Lara, M. Brudno, and M. Satyanarayanan,
““‘SnowFlock: Rapid Virtual Machine Cloning for Cloud
Computing,”” in Proc. 4th ACM Eur. Conf. Comput. Syst., New
York, NY, USA, 2009, pp. 1-12.

[26] J. Laprie, J. Arlat, C. Beounes, and K. Kanoun, ‘‘Definition and
Analysis of Hardware- and Software-Fault-Tolerant Architectures,’’
Computer, vol. 23, no. 7, pp. 39-51, July 1990.

[27]1 W.Li, J. He, Q. Ma, I.-L. Yen, F. Bastani, and R. Paul, ‘‘A Framework
to Support Survivable Web Services,”” in Proc. 19th IEEE Int’l
Symp. Parallel Distrib. Process., 2005, p. 93.2.

[28] X.Lu, H. Wang, J. Wang, J. Xu, and D. Li, ‘‘Internet-Based Vir-tual
Computing Environment: Beyond the Datacenter as a Com-puter,”’
Future Gener. Comput. Syst., vol. 29, no. 1, pp. 309-322, Jan. 2013.

[29] M.R. Lyu, ‘‘Software Fault Tolerance,”” in Trends in Software.
Hoboken, NJ, USA: Wiley, 1995.

[30] M.R. Lyu, Handbook of Software Reliability Engineering. New
York, NY, USA: McGraw-Hill, 1996.

[31] P. Mell and T. Grance, ‘“The NIST Definition of Cloud Computing

Recommendations of the National Institute of Standards and
Technol-ogy,”” National Institute of Standards and Technology,
Gaithers-burg, MD, USA, NIST Special Publication 800-145, 2011.

[32] M.G. Merideth, A. Iyengar, T. Mikalsen, S. Tai, I. Rouvellou, and P.
Narasimhan, ‘‘Thema: Byzantine-Fault-Tolerant Middleware
Forweb-Service Applications,’” in Proc. 24th IEEE SRDS, 2005, pp.
131-142.

[33] D. Oppenheimer and D.A. Patterson, ‘‘Studying and Using Failure
Data from Large-Scale Internet Services,’” in Proc. 10th Workshop
ACM SIGOPS Eur. Workshop, 2002, pp. 255-258.

[34] S.L.Pallemulle, H.D. Thorvaldsson, and K.J. Goldman, ‘‘Byzan-tine
Fault-Tolerant Web Services for N-Tier and Service Oriented
Architectures,’” in Proc. 28th ICDCS, 2008, pp. 260-268.

[35] S. Pearson, ‘‘Taking Account of Privacy When Designing Cloud
Computing Services,”” in Proc. ICSE Workshop Softw. Eng.
Challenges CLOUD, May 2009, pp. 44-52.

[36] B. Randell and J. Xu, “The Evolution of the Recovery Block
Concept,”” in Softw. Fault Tolerance, M.R. Lyu, Ed. Chichester,
U.K.: Wiley, 1995, pp. 1-21.

[37] J. Salas, F. Perez-Sorrosal, N.-M. Marta Pati, and R. Jime nez-Peris,
“Ws-Replication: A Framework for Highly Available Web
Services,”” in Proc. 15th Int’l Conf. WWW, 2006, pp. 357-366.

[38] G.T. Santos, L.C. Lung, and C. Montez, ‘‘FTWeb: A Fault Tolerant
Infrastructure for Web Services,”” in Proc. 9th IEEE Int’l Conf.
Enterprise Comput., 2005, pp. 95-105.

[39] G.-W. Sheu, Y.-S. Chang, D. Liang, S.-M. Yuan, and W. Lo, ‘A
Fault-Tolerant Object Service on Corba,”” in Proc. 17th ICDCS,
1997, pp. 393-366.

[40] S. Sivathanu, L. Liu, M. Yiduo, and X. Pu, ‘‘Storage Management in
Virtualized Cloud Environment,”” in Proc. 3rd IEEE Int’l Conf.
Cloud, 2010.

[41] W.-T. Tsai, X. Zhou, Y. Chen, and X. Bai,

““‘On Testing and Evaluating Service-Oriented Software,”” IEEE Comput.,
vol. 41, no. 8, pp. 40-46, Aug. 2008.

[42] 1. Ul Haq and E. Schikuta, ‘‘Aggregation Patterns of Service Level
Agreements,”” in Proc. 8th Int. Conf. Frontiers Inf. Technol., ser.
FIT’10, New York, NY, USA, 2010, pp. 40:1-40:6.

[43] K.V. Vishwanath and N. Nagappan, ‘‘Characterizing Cloud
Computing Hardware Reliability,”” in Proc. 1st ACM Symp. Cloud
Comput., ser. SoCC’10, New York, NY, USA, 2010, pp. 193-204.
[Online]. Available: http://doi.acm.org/10.1145/1807128. 1807161

[44] S. White and P. Smyth, ‘‘Algorithms for Estimating Relative
Importance in Networks,’” in Proc. SIGKDD, 2003, pp. 266-275.

[45] S.M. Yacoub, B. Cukic, and H.H. Ammar, ‘‘Scenario-Based
Reliability Analysis of Component-Based Software,”” in Proc.
ISSRE, 1999, pp. 22-31.

[46] W. Zhang, A. Berre, D. Roman, and H.
Huru, ‘“Migrating Legacy Applications to the Service Cloud,” in
Proc. 14th Conf. Companion. Object Oriented Programm. Syst.
Languages Appl., ser. OOPSLA09, 2009, pp. 59-68.

[47] Z. Zheng and M.R. Lyu, ‘A Distributed Replication Strategy
Evaluation and Selection Framework for Fault Tolerant Web
Services,’” in Proc. 6th ICWS, 2008, pp. 145-152.

Author Details:
C.Udaya Shankar

Department of Information
College,Chennai-119.

Technology, Jeppiaar Engineering

P.T.Ajith
Department of Information Technology, Jeppiaar Engineering College,
Chennai-119.

N.Naveen Kumar
Department of Information Technology, Jeppiaar Engineering College,
Chennai-119.

S.Pushpalatha

Assistant Professor,

Department of Information Technology, Jeppiaar Engineering College,
Chennai-119.

28 www.ijerm.com

