Pythagorean Triangle with Area/Perimeter as a Quartic Integer

Manju Somanath, V.Sangeetha, M.A.Gopalan

Abstract— Patterns of Pythagorean triangles in each of which the ratio Area / Perimeter may be expressed as a quartic integer. A few interesting relations among the sides are also given.

Index Terms—Area/perimeter, Pythagorean triangle, quartic.

I. INTRODUCTION

The Pythagorean numbers play a significant role in the theory of higher arithmetic as they come in the majority of indeterminate problems; had a marvelous effect on a credulous people and always occupy a remarkable position due to unquestioned historical importance. The method of obtaining three non-zero integers x, y and z under certain relations satisfying the relation $x^2 + y^2 = z^2$ has been a matter of interest to various Mathematicians [1]-[6]. In [7]-[18], special Pythagorean problems are studied. In this communication, we search for patterns of Pythagorean triangles wherein each of which the ratio Area/Perimeter is represented by a quartic integer. In addition to the solutions present in [19], we exhibit some more solutions and few relations among the sides.

Notations:

- $t_{m,n}$ Polygonal number of rank n with side m.
- $cp_{m,n}$ Centered polygonal number of rank n with
- $CP_{m,n}$ Centered pyramidal number of rank n with
- G(n) Gnomonic number of rank n.

II. METHOD OF ANALYSIS

The most cited solution of the Pythagorean equation,

$$x^2 + y^2 = z^2 (1)$$

is represented by

$$x = 2mn$$
; $y = m^2 - n^2$; $z = m^2 + n^2$ (2)

Denoting the Area and Perimeter of the Pythagorean triangle by A and P respectively, the assumption $\frac{A}{P} = \alpha^4$, $\alpha > 1$

$$\frac{A}{P} = \alpha^4$$
 , $\alpha > 1$

leads to the equation

$$n(m-n) = 2\alpha^4 \tag{3}$$

Manuscript received March 22, 2015

Manju Somanath , Department of Mathematics, National College, Trichirapalli - 620 001

V.Sangeetha, Department of Mathematics, National College, Trichirapalli - 620 001

M.A.Gopalan , Department of Mathematics, Srimathi Indira Gandhi College, Trichirapalli-620 002

It is noted that (1) can be satisfied by the following triple of integers:

$$\begin{array}{c} \left(12\alpha^{4},1+4\alpha^{4},1+4\alpha^{4}+8\alpha^{8}\right),\\ \left(4\alpha^{4}+8,4\alpha^{4}+\alpha^{8},4\alpha^{4}+\alpha^{8}+8\right),\\ \left(2\alpha^{4}(\alpha^{4}+2),4\alpha^{4}+4,2\alpha^{8}+4\alpha^{4}+4\right),\\ \left(4\alpha^{4}(1+2\alpha^{2}),\alpha^{2}(1+4\alpha^{2}),\alpha^{2}(1+4\alpha^{2})+8\alpha^{6}\right),\\ \left(2\alpha^{2}(2\alpha^{2}+1),4\alpha^{4}(\alpha^{2}+1),2\alpha^{2}(2\alpha^{4}+2\alpha^{2}+1)\right),\\ \left(2(2\alpha^{4}+1),4\alpha^{4}(2\alpha^{4}+1),4\alpha^{4}(2\alpha^{4}+1)+2\right). \end{array}$$

In addition to the above solutions, we obtain the different patterns of solutions to (1).

A. Pattern 1

Equation (3) can be written in the ratio form as

$$\frac{n}{\alpha^2} = \frac{2}{m-n} = \frac{c}{d}$$

 $\frac{n}{\alpha^2} = \frac{2}{m-n} = \frac{c}{d}$ Using the method of cross multiplication, we obtain

$$m = 2\frac{d}{c} + \frac{c}{d}\alpha^4$$

$$n = \frac{c}{d}\alpha^4$$

Since m and n are to be integers, we choose

$$\alpha = d\beta$$
 and $d = c\delta$, $(\beta, \delta \neq 0)$.

Therefore

$$m = 2\delta + cd^3\beta^4 \quad ; \quad n = cd^3\beta^4 \tag{4}$$

Using (4) in (2), the sides of the Pythagorean triangle are obtained as

$$x = 2(2\delta + cd^3\beta^4)(cd^3\beta^4)$$

$$y = 4\delta(\delta + cd^3\beta^4)$$

$$z = 4\delta^2 + 2c^2\beta^8d^6 + 4cd^3\beta^4\delta$$

Properties

- $x(1,d,1,1) G(2d^3)$ is a centered square number of rank d^3 .
- $y(1, d, 1, 1) 4CP_{d^3}^6$ is a perfect square.
- z(1, d, 1, 1) y(1, d, 1, 1) is a Kynea prime.
- $d^{3}[x(1,d,1,1) y(1,d,1,1)] + 3CP_{d}^{6}$ is a Stella Octangula number of rank d^3 .
- $z(1, d, 1, 1) x(1, d, 1, 1) + 2t_{4,d^3}$ is a number.

B. Pattern II

We write (3) in another ratio as

$$\frac{n}{\alpha} = \frac{2\alpha^3}{m-n} = \frac{c}{d}$$

 $\frac{n}{\alpha} = \frac{2\alpha^3}{m-n} = \frac{c}{d}$ Using the method of cross multiplication, we obtain

$$m = 2\frac{d}{c}\alpha^3 + \frac{c}{d}\alpha$$
$$n = \frac{c}{d}\alpha$$

Assuming $\alpha = cd$, we get m and n as integers as follows:

$$m = c^2(2d^4 + 1)$$
 ; $n = c^2$ (5)

Using (5) in (2), the sides of Pythagorean triangle are obtained as

$$x = 2c^4(1 + 2d^4)$$

$$y = 4c^4d^4(1 + d^4)$$

$$z = 2c^4(1 + 2d^4 + 2d^8)$$

Properties

- The following expressions are nasty numbers:
 - (a) x(c,1) + y(c,1) + z(c,1)
 - (b) 6[z(c,1) x(c,1)]
 - (c) $6[z(1,d) y(1,d) + x(1,d) t_{4,2,d^2}]$
- z(1,d) y(1,d) is a Kynea prime.
- z(1,d) 1 is a centered octagonal number of rank d^4 .
- Note that the pair (x,z) satisfies the parabola $x^2 = 4c^4(z - c^4).$
- Note that the pair (x,y) satisfies the parabola $x^2 = 4c^4(v + c^4)$.

C. Pattern III

Equation (3) may also be expressed in the form of ratio as

$$\frac{n}{\alpha^2} = \frac{2\alpha^2}{m-n} = \frac{c}{d}$$

 $\frac{n}{\alpha^2} = \frac{2\alpha^2}{m-n} = \frac{c}{d}$ Following procedure in above two patterns we *m* and *n* as

$$m = \frac{\alpha^2}{cd}(2d^2 + c^2)$$

$$n = \frac{c}{d}\alpha^2$$

As we interested only in integer solutions we assume $\alpha^2 = cd$ to obtain m and n as integers.

Therefore,

$$m = 2d^2 + c^2$$
; $n = c^2$ (6)

Using (6) in (2), the sides of Pythagorean triangle are obtained as

$$x = 2c^{2}(2d^{2} + c^{2})$$

$$y = 4d^{2}(d^{2} + c^{2})$$

$$z = 4d^{2}(d^{2} + c^{2}) + 2c^{4}$$

Properties

- Each of the following expressions are perfect squares
 - (a) z x.
 - (b) $y + z x 8t_{4.d^2}$.
- 3(z y) is a nasty number.
- Each of the following expressions are kynea primes:
 - (a) z(1,d) y(1,d).
 - (b) $z(1,d) 8t_{3,d^2}$.

CONCLUSION

To conclude, one may search for other choices of Pythagorean triangles in connection with special figurate numbers and their corresponding properties.

REFERENCES

- [1] L.E. Dickson., "History of theory of numbers", vol.2, Chelsea Publishing Company, New York, 1952.
- [2] D.E. Smith, "History of Mathematics", vol.1 and 2, Dover Publications, New York, 1953.
- [3] S.G. Telang, "Number Theory", Tata McGraw-Hill Publishing Company, New Delhi, 1996.
- [4] Thomas Koshy, "Elementary Number Theory with Applications", Academic Press, 2005.
- [5] T. Nagell, "Introduction to Number Theory", Plencem, New York,1988.

- [6] L.J. Mordell, "Diophantine Equations", Academic Press, New York, 1969
- [7] M.A. Gopalan and S. Leelavathi, "Pythagorean triangle with 2(Area/Perimeter) as a cubic integer", Bulletin of Pure and Applied Sciences, vol.27 E(2), 2007, pp. 197-200.
- [8] M.A. Gopalan and G. Janaki, "Pythagorean triangle with Area/Perimeter as a special polygonal number", Bulletin of Pure and Applied Sciences, vol.27 E(2), 2008, pp. 393-402.
- [9] M.A. Gopalan and S. Devibala, "Pythagorean triangle with triangular number as a leg", Impact J.Sci.Tech. vol.2(4), 2008,pp.195-199.
- [10] M.A. Gopalan and G. Janaki, "Pythagorean triangle with nasty number as a leg", Journal of Applied Mathematical Analysis and Applications", vol.4(1-2), 2008, pp. 13-17.
- [11] M.A. Gopalan and G. Janaki, "Pythagorean triangle with perimeter as a pentagonal number", Antarctica J. Math., vol.5(2), 2008,pp.15-18.
- [12] M.A. Gopalan and A. Gnanam, "Pythagorean triangles and special polygonal numbers", International Journal of Mathematical Sciences vol.9(1-2),2010,pp.211-215.
- [13] M.A. Gopalan and G. Sangeetha, "Pythagoream triangles with perimeter as triangular number", The Global Journal of Applied Mathematics and Mathematical Sciences, vol.3(1-2), 2010, pp. 93-97.
- [14] M.A. Gopalan and B. Sivakami, "Pythagorean Triangle with Hypotenuse minus 2(Area/Perimeter) as a integer", Archimedes J. Math., vol. 2(2), 2012, pp. 153-166.
- [15] M.A. Gopalan and V. Geetha,"Pythagorean triangle with Area/Perimeter as a special polygonal number", International Refereed Journal of Engineering Science, vol. 2(7), 2013, pp. 28-34.
- [16] M.A. Gopalan, Manju Somanath and K. Geetha,"Pythagorean triangle with Area/Perimeter as a special polygonal number", IOSR-JM, vol.7(3), 2013, pp52-62.
- [17] M.A. Gopalan, Manju Somanath and V.Sangeetha, "Pythagorean triangles and pentagonal number", Cayley J.Math,,vol.2(2),2013,pp.151-156.
- [18] M.A. Gopalan, Manju Somanath and V.Sangeetha, "Pythagorean triangles and special pyramidal numbers", IOSR-JM, vol.7(4), 2013,pp.21-22.
- [19] P. Thirunavukkarasu and S. Sriram, "Pythagorean triangle with Area/Perimeter as quartic integer", International Journal of Engineering and Innovative Technology (IJEIT), vol.3(7),2014,pp.100-102.