International Journal of Engineering Research And Management (IJERM)

ISSN : 2349- 2058, Volume-02, Issue-05, May 2015

CAVLC ENCODING TECHNIQUE FOR H.264

Afreen Hamza L, Manasa M G, Payal Basak, Shikha Khandelwal, Vinod B Durdi

Abstract— The latest advancement in H.264 video
compression technique is CAVLC method used for
entropy coding. After the prediction, transformation and
quantization a block of 4X4 is obtained containing mostly
zeros. The zig zag scan of block is done to obtain the
following for better compression in this lossless technique.
1)Non zero coefficients from neighboring blocks are
correlated and encoded using look up table. 2) The main
sequence obtained by zig zag scan is £1 coefficients which
represent the highest frequencies. 3) Zeros and the run
level coding of zeroes after the scanning are encoded by
referring the look up tables. 4) Levels in zig zag block are
the representation of the highest to lowest frequencies.

Index Terms— CAVLC,H.264 video compression,
entropy coding

I. INTRODUCTION

Context based adaptive technique is a method in which the

non zero coefficients are compared with the previous
coefficients before encoding. The result of prediction which
contains the residual data of the two frames (reference frame
and the current frame) contains less information to encode
than the original raw data. The data is converted into a
frequency representation during block transformation. Here
the low frequency information is stored near the top left
corner of macroblock, while the high frequency information is
stored in bottom right corner of each block. The entropy
coding involves the conversion of the data needed to recreate
the video file into Os and 1s.
CAVLC is chosen because of the following advantages. It is
less complex than CABAC and therefore encodes faster.
Hence, CAVLC is preferred when speed is required. CAVLC
can be used in all profiles but CABAC can be used only in
certain profiles. VLC allows sources to compress (close to its
entropy) and decompress with zero error and still be read back
symbol by symbol. But for data compression with large data
blocks, this method fails.

II. PROCEDURE FOR ENCODING

A. Zig zag scan
Magnitude of low frequency coefficients tends to be greater
than high frequency coefficient. The Zig zag scan is used to

Manuscript received May 15, 2015

Afreen Hamza L, Dept. of Telecommunication Engineering, Dayananda
Sagar College of Engineering, Bangalore, India

Manasa M G, Dept. of Telecommunication Engineering, Dayananda
Sagar College of Engineering, Bangalore, India

Payal Basak, Dept. of Telecommunication Engineering, Dayananda
Sagar College of Engineering, Bangalore, India

Shikha Khandelwal, Dept. of Telecommunication Engineering,
Dayananda Sagar College of Engineering, Bangalore, India

Vinod B Durdi, Associate Professor, Dept. of Telecommunication
Engineering, Dayananda Sagar College of Engineering, Bangalore, India

186

rearrange the coefficients of 4x4 block into a vector
that(varies from low to high frequency) has coefficients in
increasing order from reverse side. Hence, by using CAVLC
encoder in reverse order i.e zig zag scanning, we can
minimize the number of required bits!"). For reading, a 16:1
mux is used. All 16 coefficients are given to mux as input. For
this encoder a 4 bit counter is used as select line to select each
input coefficient given to mux. Output of this mux is stored in
memory.

B. Sign and total number of trailing ones

This module represents the number of +1 that appear at the
end of zig zag reordered vector.

Calculation: From the first non zero coefficient start
calculating the number of 1s in the reverse zig zag vector(+1
or -1). If the first non zero coefficient is other than 1, trailing
one count will be zero. If the encountered first non zero
coefficient in the reverse zigzag vector is +1, start counting
the succeeding number of 1s(irrespective of its sign) and start
the trailing ones counter. The maximum trailing one count can
be 3. If succeeding non zero coefficient is other than 1, stop
trailing ones counter. The overview of the hardware for this
module is shown in Fig 1.

Input Gr 1
COMPARATOR =
1_. sign_bit
DFF [
COMPARATOR
1—
Counter >
Trailing_ent
np g |

Fig 1. Trailing ones module

C. Nc calculation
Na=number of non-zero coefficient of previous 4x4 CAVLC
coded block.
Nb=number of non-zero coefficient of 4x4 CAVLC coded
block above the current block.
Ne calculation:
Nc=Na (if only left block is available).
Nc=Nb (if only upper macroblock is available).
Nc=(Na+Nb)/2 (if both upper and left blocks are
available).
Nc=0 for the first block of every frame.

D. Coefficient token
Coefficient token depends on total coefficient, trailing ones
and Nc value as shown in Fig 2. Refer TABLE III*¥ for the
value of coefficient token.

www.ijerm.com

CAVLC ENCODING TECHNIQUE FOR H.264

Nc
—
Num non zero coeff At Coeff token
— s
encoder

Trailing cnt
—>

Fig 2. Coefficient token module
E. Total zeroes

Referring to Fig 3 find the total number of zero coefficient in
4x4 CAVLC coded block between first non zero coefficient
to the last coefficient of block in reverse order coded zigzag
vector. Compute total zero code referring the look up table
TABLE III! which includes the total zeros and total
coefficient.

Input
—

Comparator eq 0 Total_zero zero_code

Counter LUT
< "
» (Total_zero)
Total_coeff
Fig 3. Total zeroes
F. Levels

Except the trailing ones, all non-zero coefficients are
considered as levels. Number of levels= (total no. of non-zero
coefficient — trailing ones) present in CAVLC 4*4 coded
block. As number of levels depends on the number of non
zero coefficients present in CAVLC 4*4 coded block. Level
increases, as number of non zero coefficiesnts increases'®.

In Fig 4 the flow chart for calculating level code is shown by

concatenating suffix length and prefix length.

Algorithm for calculating prefix suffix

For level calculation there will be <prefix><suffix>. Prefix is
calculates as <zeros 1>, calculation of no. of zeros in prefix
will be discussed in Algorithm!®. Suffix has the sign bit as its
LSB, the remaining bits of suffix is calculated from the
nonzero coefficient which will be discussed in Algorithm.
Number of bits of suffix is called as Suffixlength.

Algorithm for level:

For a given nonzero coefficient, ‘a’

Step 1: If (numCoeff > 10) and (T1 < 3), Suffixlength = 1 or
else Suffixlength = 0

Step 2: If (Suffixlength = 0) and (numCoeff < 3 or T1 < 3),
change |‘a’| =|‘a’| — 1 and sign is same. Or else keep ‘a’ same.

(i) If |'a’| < 8, there is no suffix. Prefix will be found for ‘a’.
Prefix is <zeros 1>. No. of zeros before 1 in prefix =2 x (|‘a’|
— 1) +sign. (Ifa <0, sign = 1, else sign = 0). Go to Step 12.

(i) If|“a’| < 16, there is suffix of length, suffixlength = 4. The
LSB of suffix = sign bit. The remaining bits (3 bits) is (|‘a’| —
8). The prefix is <14 zeros 1>. Go to step 12.

187

(iii) If |‘a’| > 15, there is <Prefix><Suffix>. Diff = |‘a’| — 16.
Go to Step 9.

Step 3: Else (Suffixlength = 1), change |a’| =|‘a’| — 1 and sign
is not changed. There will be <prefix><suffix> = <zeros
1><suffix>.

Step 4: If (Ja] — 1) > 15 x 2suffixlength-1, Diff = (ja] — 1) — (15
x 2suffixlength-1), Then go to Step 9.

Step 5: If “a’ is positive, the LSB of suffix = 0, or else LSB of
suffix =1

Step 6: If suffixlength > 1, the remaining bits of suffix = the
(Suftixlength — 1) LSBs of (Ja| — 1)

Step 7: No. of zeros in prefix = value of remaining MSBs of

(][=1

Step 8: The code for <prefix><suffix> is ready. Go to Step
12.

Step 9: Suffix length = 12 + (Diff >> 11) bits Step 10: Prefix =
< (15 + 2*(Diff >> 11)) zeros 1 >

Step 11: LSB of Suffix = sign bit of ‘a’. Remaining bits of
Suffix = Binary form of Diff (Right Aligned).

Step 12: Based on present nonzero coefficient ‘a’, set the next
Suffixlength (Ref: TABLE 1V)

Note 1: If first nonzero coefficient (other than trailing ones),
and if the present |‘a’| > 3, then new suffixlength = 2.

Note 2: Else if the new Suffixlength > previous Suffixlength,
Suffixlength will be incremented.

Note 3: Else keep the same previous Suffixlength as new
Suffixlength. (Previous Suffixlength means the Suffixlength
calculated previously in the same step, not in any other steps).

Step 13: If any nonzero coefficient is available next, read ‘a’
and then go to Step 4.

Step 14: Stop.

Current Suffix
Coefficient Length
Y Y v
Prefix Suffix
v Y
Codeword

Fig 4. Prefix-suffix module

G. Run before
Run before provides the information about the location of
zeroes in CAVLC 4X4 coded block.
The calculation is as follows:
Starting from the first non-zero coefficient from the last (the
very first value of the 4X4 matrix) after reordering, the zeroes

www.ijerm.com

International Journal of Engineering Research And Management (IJERM)
ISSN : 2349- 2058, Volume-02, Issue-05, May 2015

are calculated to get the total zeroes. Taking every non-zero

TABLE II: COEFFICIENT TOKEN

value the number of zeroes preceding the value is calculated T1 | numCoeff 0<nC<2 2<nC<4 4<nC<8 | 8<nC
and refered as run-before. The value of zeroes left is equated 2 12 [QUUOONEIMAOTINL | DOOENMERtTor L ioonitio] | 0T
N 2 13 000000000001001 [0000000001001 | 000001001 | 110010
to the total zeroes at the lnltlal Stage. Later Stages we Subtract 2 14 0000000000001101 | 0000000000110 | 0000001011 | 110110
the run before value from total zero to obtain zeroes left 2 15 0000000000001001 | 00000000001010 | 0000000111 | 111010
shown in Fig 5. With help of run-before and zeroes left the ; 136 883‘1’200000000101 828(1)0000000101 ?‘1’38000011 éé}éﬁ
code is obtained from the run before TABLE V as given 3 3 000011 0100 011 001111
below. 3 5 0000100 00110 1010 010011
3 6 00000100 001000 1001 010111
3 7 000000100 000100 1000 011011
Tuput_| 3 8 0000000100 0000100 01101 011111
——— LUT 3 9 00000000100 000000100 001100 100011
. 3 10 0000000001100 00000001100 0001100 100111
N 0 3 11 00000000001100 | 00000001000 00001100 [101011
3 12 00000000001000 | 000000001100 | 00001000 | 101111
= et 3 13 000000000001100 | 0000000001100 | 000001100 | 110011
I P Mod 3 14 000000000001000 | 0000000001000 | 0000001010 | 110111
ule |Run_before 3 15 0000000000001100 | 0000000000001 | 0000000110 | 111011
T i) 3 16 0000000000001000 | 00000000000100 | 0000000010 | 111111

- Add- >

sub zero_left

Total_zeros

TABLE III: TOTAL ZEROES

Number of nou

oeff)
J

34 e[T8y un
0101 {00071 0101 | 000001 | 0000 | 000201 | 000001 | 000E1 0000|0000 000 00 0
0100"| 00001 | 0001 | 0902 | 900900 | 000000001 [0doL{oar o1 1
DL O 1 1 1 O)
O A VS VS (8
000 |10 10 j1onjoroqnmo {0 o 1 jo
0011 |01 100 (100 1 1 |0 o
100 |00 100 011 |00 jo |0
011 |0011 011 010 |odor joor |0
0010 |01 0010 0001 |oar | 00d00d
00011 1001000001 001
00010 100010 0001

Fig 5. Run before module B U5

0

III. RAM AND ASSOCIATED TABLES

In CAVLC encoder, RAM stores the look up tables for all
modules and the number of coefficients of all encoded
macroblock needed to calculate Nc. For Nc calculation we
take the stored values i.e. number of coefficients of upper

zeros)

001

000000

macroblock (Na) and left macroblock (Nb) of current
encoding macroblock. RAM access the data from memory
according to the read or write operations needed for the Nc

calculation.

TABLE I: COEFFICIENT TOKEN

000001 | 00010000

No. of zeros (total,

00010 0001 | 00030

00000

TABLE IV: SUFFIX LENGTH

T1 | numCaosff 0 =nC=2 2znl<d 4 =0k« /) £ = nlt

0 [1 11 1111 000011 Nonzero Eu_'ﬁ:hngthm be
4] 1 a0olnl oo10LL 00111l Qpo0ag .

0 2 DO00O1LL Do0111 Do1011 D000 Coefficient st

1] 3 COO00LLL ooooiLl 00§00 Q1000 0 0

[1] 4 Q000000111 00000111 0001111 001100

1] 5 Q00pRo0ni11 QOOO0 L0 Qoa10ll 010000 1.2.3 1

[1] 3 0000000001111 000000111 0001001 010100 -

o il 0000000001011 00000001111 000 1000 011000 4 5 8 2

[} g 0000000001000 0DO0a00101 1 00001111 | 011100 L -

0 9 | 0000000000111 | 0000000D1111 | 00001011 | 100000 7.8.2.10,11,. 12 3

o e QOOpQOano1oLL QoOOQOno10LL Qoan01111 lnolag 13 =24 4

0 11 O00000000001111 | 000000001000 | 000001011 | 101000 -

1] 12 QOODDOOA00RI0LL | 0OQOO00001111 | 000001000 | 101100 5 —48 5

[} 13 0000000000001 111 | 0000000001011 | 0000001101 | 110000

0 14 OO00000000001011 | 0000000000111 | 0000001001 | 110100 =48 1]

1] 14 QOOQOQONCORRALL] | 0O0OQO0ROOLO0L | 00O00M010L | 111000

[1] 16 OO00000000000100 | 0000000000111 | 000U0UR001 | 111100

1 1 01 10 1110 000001

1 2 Q00100 00111 01111 Q00101 .

1 3 QO0pRLLO onlaLn Q10 10a) TABLE V: RUN BEFORE

1 3 000000110 000110 01010 001101 serosLeft

1 5 Q000000 L 10 oooaLi0 01000 Q10001 run_before

1 5 00000000110 00000110 001110 010101 1 . 3 4 5 0 >0

1 7 Q000000001110 oooo00110 001010 11001 0 1 1 11 11 1 11 11

1 8 0000000001010 00000001110 0001110 011101 1 0 1 ol | 10 1 10 oo 10

1 B 0000000001110 | 000000010140 00001110 | 100001) 0 1 o T L

1 1 QO000000001010 OOOO000011 10 00001010 inoiod

1 i1 000000000001 110 | 000000001010 | 000001110 | 101001 3 00 001 0w 0 100

1 12 QOO0DOOA0001010 | 0000000001110 | 004001010 | 101101 4 000 001 010 011

1 13 0O0000000000001 | 0000000001010 | 000000111 | 110001 3 N IR o

1 14 QOOODOOA0000L L0 | 000000001011 | 0O000F1100 | 11010)

1 15 DO000000ONR0L010 | DO000O0DO0 00 | 0000001006 | 111001 b 100 001

1 16 COO0DOQA00RO0L10 | 0OOAO00000A110 | 0000100 | 111101 7 - 0001

2 2 001 D11 1101 00110 8 00001
2 3 0000101 001001 01110 001010

2 4 QO0DLOL oo0L0L 0101l llig 9 000001
2 5 [GLGEITT] no00101 01001 010010 10 0000001
2 [c] OO0GOOAL01 OOOa0101 o01101 10118 1 00000001
2 K QOOpROOaL01 QooO0a1n1 QaL0el 011010 12 000000001
2 & 0000000001101 00000001101 0001101 011110

z @ 00000000101 00000001001 0001010 100010 13 0000000001
2 in Q0000000001101 000000001101 00001101 100110 14 00000000001
2 11 COOROOANT1001 QOOOOND100L QOOn1001 101010

188 www.ijerm.com

CAVLC ENCODING TECHNIQUE FOR H.264

IV. SIMULATION RESULTS

A. Coefficient token module
The input variables of clock, reset, enable are given with the
nA and nB calculated value to give out Nc, shown in Fig 6.
The calculated values of total non zero, trailing one are
included in finding out the code for coefficient token.

Signals Wates
Mine !

coeHcient[%:0]
Tatalnonzeral3: (]
Trailingnne(3:0)

Fig 6. Simulation of coefficient token module

B. Sign of trailing ones module
Fig 7 shows clock, reset, enable and total coefficient are given
as input to get the out as the signs of the trailing ones.
S s
Tie

el

15.2]

e

gt fitegt 91
HE
s s

Fig 7. Simulation for sign of trailing ones module

C. Total zeroes module
Total coefficient, clock, enable, reset are used to find the code
for the total zeroes in the code, shown in Fig 8.
Signals Waes
Tine

clk

st

enahle

coetticient [3:0]
Motalcoeticient [4:0]
2eras(3:0]

code(B.0]
en_zeras[3:0]

Fig 8. Simulation for total zeroes module

D. Run before module
The Fig 9 shows run before code with total zeroes left and run
before value (indicates the number of zeroes before each
non-zero coefficients).
Sipas Vs

Fig 9. Simulation for run before module

189

CONCLUSION

CAVLC in H.264 provides the advantage of good and
efficient performance. It is a high speed algorithm providing
fast compression. The RAM included in the hardware design
stores the nA and nB values. The paper showcases the
advantage of using CAVLC encoder with zig-zag.

REFERENCES

[1]Iain E. Richardson, The H.264 Advanced Video
Compression Standard, 2Medition, Veodex limited, UK.

[2]ITU-T TELECOMMUNICATION STANDARDIZATION
SECTOR OF ITU SERIES H: AUDIOVISUAL AND
MULTIMEDIA SYSTEMS Infrastructure of audiovisual
services — Coding of moving video

[3]Iain. E.Richardson, Video Codec design, Developing Image
and Video Compression Systems

[4] Architecture Design of Context-Based Adaptive
Variable-Length Coding for H.264/AVC, IEEE
transactions on circuits and systems—ii: express briefs,

vol. 53, no. 9, september2006

[5]High Performance Context Adaptive Variable Length
Coding Encoder for MPEG-4 AVC/H.264 Video Coding

[6] Asma Ben Hmida, Salah Dhahri, and Abdelkrim Zitouni,
“A High Performance Architecture Design of CAVLC
Coding Suitable for Real-Time Applications,” ACEEE,
Proc. of World Cong. on Multimedia and Computer
Science, pp. 69-74, 2013

www.ijerm.com

