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Abstract— In this paper we have studied Hsu-structure &
H-structure manifolds and obtained with constant
holomorphic sectional curvature. On this communication
we prove that every 2m dimensional connected NK-
manifold of pointwise constant holomorphic sectional
curvature is an Einstein manifold
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[. INTRODUCTION

Let F be a (1,1) tensor field on C” n-dimensional
differentiable manifold M, such that
F*(X)=a"X, 1)

where a is a real or a purely imaginary number and X an
arbitrary vector field on M, Clearly, F is an endomorphism of

the tangent space 7', (M), for every point p& M. F gives

a differentiable structure on M called Hsu-structure defined
by (1).

Let there be defined on Vn , avector valued linear function
F of class C such that

F2

— r
=a'l,

0<r<n

where r is an integer and a is real or imaginry number. Then F
is called Hsu — structure and ¥ is called the Hsu — structure

n

manifold.

p
If aé =0, we have an almost tangent structure.

.
If a % #0, we have a 7 — structure which is known from

G. Legrand in [4], (1956), Especially if a” =1, we have an

almost product structure, if a” =—1, we have the well

known almost complex structure, (J X =-X )

If the above mentioned Hsu-structure F is equipped with a
Hermitian metric g such that

g(FX,FY)+a g(X,Y)=0.
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for any vector fields X,Y on M, then (gF) is called
H-structure and M is said to be H-structure manifold. Many
authors studied H-structure manifolds: K.L. Duggal in [1] and
[2] was of the first ones.

If the structure tensor F is parallel
(i.e.(V F )Y =0, where V is the Riemannian
connection), then M is called K-manifold.

If the structure tensor F satisfies the condition

(V «F )Y =0, for arbitrary vector field X on M, then M is
called nearly K-manifold (briefly NK-manifold).

In the present communication we deal with some 2m-
dimensional H-structure manifolds. In the second section we
shall give some useful preliminaries. In the last section we
shall give the main result of the present communication,
which are referred in [1].

II. PRELIMINARIES

Let ¢ be (0,2)-tensor on a 2m-dimensional H-structure
manifold M such that
¢(X,Y)=g(FX,Y)=-g(X,FY). @

Using (2) we can prove:

(X, Y)+¢(Y,X)=0, 3)
O(FX,FY)+a ¢(X,Y)=0, 4)
(Vo)\Y.2)+ (V)2 Y)=0,

(V ONFY,FZ)=a"(V,¢)Y,Z). (6
Denoting by (W, X,Y,Z) = g((V,, F)X,(V,F)Z ),
the properties (3) and (4) give:

w,x,Y,2)=(Y,Z,W,X),

(W,FX,Y,FZ)=-a"(W,X,Y,Z),
W,FX,Y,Z)=—(W,X,Y,FZ),

(7

It is well known that the curvature tensor R is defined by:

RyZ=VyZ-V, v,z
We denote by

R(W,X,Y,Z)z g(RWXY7Z)7
for arbitrary vector fields W,X,Y and Z on M.
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It is also known that the holomorphic sectional curvature % .
H(x)is defined by E .=+N-1E /a ,(l = 1,....,m).
We denote by k and k" the Ricci tensor and the Ricci
H(x) = R(x, Fx,x,Fx )/g(x,x)g(Fx,Fx), *tensor on M, respectively. The Ricci *tensor & is defined
by

for xg Tp(M),(peM ).
Let {E,....,E, E
frame field such that:

k'(x,y) =trace of (z — R(Fz,x)Fy),

E } be an orthonormal

for x, y,zeT, (M), peM.

3. MAIN RESULTS
In the present section we shall state the main results of the present communication.

Theorem 1
Let M be on H-structure manifold of pointwise constant holomorphic sectional curvature c(p). Then

4a"c(p)| —20(x,y)Fw—(x,w)Fy +$(y, w)Fx +a"g(x,w)y —a"g(y,w)x |=
=-3a” R(w,x)y +3FR(Fw, Fx)Fy + a’ R(Fw,Fx)y —a’ FR(w,x)Fy —
a " R(Fw,x)Fy —3a" FR(Fw,x)y +3a" R(w, Fx)Fy +a" FR(w, Fx)y +
3a"R(w,y)x —3FR(Fw,Fy)Fx—a " R(Fw, Fy)x+a" FR(w,y)Fx +
a"R(Fw,y)Fx+3a" FR(Fw,y)x—3a"R(w, Fy)Fx —a" FR(w, Fy)x.

We now state some lemmas.

Lemma 1
If M is an H-structure manifold and {E ; } is an orthonormal frame field, for every vector field X we have:

2m
> [R(X, FE)FE, +a'R(X,E,)E, ]=0,
i=1
2m
> [R(X,E)]FE, +a"R(X,FE,)E, ]=0,

i=1

Lemma 2
Let M be a H-structure manifold. Then for arbitrary vector fields X,Y on M we have:

k(X,Y)=k(Y,X)
kK" (FX,FY)=—-a"k" (Y, X)
k(FX,Y)=—-k*(FY,X).

Ifsand s~ are the scalar and the *scalar curvatures of M respectively, then we have:

Proposition 1
If M be a 2m-dimensional H-structure manifold of pointwise constant holomorphic sectional curvature c(p), then for arbitrary

vector fields X,Y on M, we have:

a"k(X,Y) = k(FX,FY) =3[k’ (X, Y)+ k" (Y, X) ]
=4(m+1c(pa’g(X,Y),

a’s—3s =4m(m+1a’c(p).

The results of the theorem 1 and the proposition 1 have been obtained by G.B. Rizza for aé =—1,(5D.
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For every NK-manifold we have:

k(X,Y)=(a" -3)" fn (X,E,Y,E,),

iml

k(FX,FY) = —a"k(X,Y),
K (X, Y)=k'(Y,X),
k(X Y)=(a" -3)" a"k(X.Y).

Using the above relations we can obtain the following:

Theorem 2
If M is a 2m-dimensional connected NK-manifold of pointwise constant holomorphic sectional curvature, then M is an Einstein
manifold.
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