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Abstract— ABSTRACT : The vector space of the tensors

3 of type (0,3) having the same symmetries as the
covariant derivative of the fundamental form of an almost
r-contact metric manifold is considered. A scheme of

decomposition of 3 into orthogonal components which
are invariant under the action of U(I’l) x 1 is given .

Using this decomposition there are found 12 natural basic
classes of almost r-contact metric manifolds. The classes
of cosymplectic, O — Sasakian, O — Kenmotsu, etc.
manifolds fit nicely to these considerations. On the other
hand , many new interesting classes of almost r-contact
metric manifolds arise
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ON THE CLASSIFICATION OF THE ALMOST r-CONTACT METRIC MANIFOLDS

I. INTRODUCTION
PRELIMINARIES
Let V be a (2n+1)- dimensional real vector space with almost r-contact metric structure (¢, é NI ) , Where ¢ is a tensor of

type (1,1), g is a vector, 1] is a convector and g is a definite metric so that

PPx=—x+n’s,, $(E,)=0, 0’ ¢=0.
g(&,.¢,)=1, glgx,dy)=g(x,»)—n"(xm?(»)
For arbitrary vectors x y in V. For arbitrary X € J, we denote /1x = ¢2 X.
We consider the subspace I3 0f V" @ V™ @ V'™ defined by the conditions :

={FeS/F(x,y,z)=—F(x,y,Z)=—F(X,¢y,¢2)+Tlp(y)F(xa§aZ)+7”Ip(Z)F(x:J’a§)}
for x,y,zinV.

Let {ei },i = 1, .......... ,21’1 + 1 be an orthonormal basis of V. The metric g induces an inner product in the vector space

I
2n+1

<F.F">= Y F'(e;e ;e )F"(e;e;,e); F'.F"e3.
i,j,k=1

We associate with every F' € Jthe following convectors:

@ fF)2)= ZF(e,, ¢j2), [T (F)2)=2F(epde.2),  o(F)(2)=F(,.8,.2)

The standard representation of U (n) X 1 in V induces an associated representation of U (I’l) X 1 in I 1t is well known the
following :
Lemma 1. Let L be an involutive isometry of 3, which commutes with the action U/ (n) X lin 3. Then

I=L"(I) DL (T),
Where L (S) and L~ (S) are the eigen spaces of L corresponding to the eigen values + 1 and -1 of L. The decomposition
is orthogonal and invariant under the action of U (I’l) x 1. The components of an element Felin L+ (S) and
L (S) are
¥ :%(F +LF), F~ :%(L —LF).

2. ASSOCIATED FORMS WITH AN ELEMENT OF J
With every F'in 3 we associate the following basic forms :

F(F)(x,y,2)=n"(x)F(§,,,2),
FZ(F)(x,y,Z)=np(y)F(x,§p,z)—np(z)F(x,ép,y),
F(F)(x,y,2)=n" (" (WF(&,.8,.2) —n" (xn " (2)F(,.5,.7)

=n"(n? (Wa(F)(z)-n” (n? (2)o(F)(y)
hF(x,y,z)=F(hx,hy,hz).
Lemma 2. Let ' € J. Then E (F) (i = 1,2,3) and NF are clements of 3 and
F =hF + F,(F)+ F,(F)— F5(F)

Further we consider the forms

F4(F)(x,y,z)=np(y)F(</)x,§p,(/)z)—np(z)F(qu,ﬁp,qﬁy),
FS(F)(x,y,Z)=np(y)F(z,§p,x)—np(z)F(y,ép,x),
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Fs(F)(x,y,2) =n" (¥)F (¢, ,.¢x) —n " (D) F (§y.£ . ¢x),

Fy(F)(x,9,2) = if(F)(ép){n” (2)g(x.y) -1 (Pg(x.2)}

Fy(F)(x,y,2) = ;—if*(F)(ip){np(Z)g(x,f/Jy) —np(y)g(x,cbZ)}
Associated with an arbitrary Fed.

Lemma 3. Let /7 € 3. Then FZ(F) (i = 4,5,6,7,8) are elements of 3.
Lemma 4. Let F' € 3. The following relations are valid.

FII(F)ZFI(F): Flz(F):F3(F)» Fls(F)st(F), Fl4(F):0: Fls(F)=0,
F21(F)=F3(F), F22(F)=F2(F), F23(F):F3(F), F24(F):F4(F), Fzs(F)ZFs(F),
F3 (F)=F3(F), F3o(F)=F5(F), F33(F)=F3(F), F34(F)=0, F35(F)=0,
Fy(F)=0, Fyp(F) = Fy(F), F3(F) =0, Fyu (F) = F,(F) = F3(F), Fys(F)=Fg(F),
F5\(F)=0, F5; (F) = F5(F), Fs53(F)=0, F54(F) = Fs(F), F55(F) = F(F) - F5(F)
F71(F)=Fl7(F):F73(F):F37(F)=0,F7l-(F)=Fl-7(F):F7(F),i:2,4,5,7,
F((F) = Fig(F) = Fg3(F) =0, Fsg(F) = Fys(F) = —Fyg(F) = —Fg4 (F) = Fyg (F) = Fg(F),
WF,(F)=F,(hF)=0, i=1,..cccc......, 8,
Where F;’](F):F;(FJ(F))
Lemma 5. Let F*' € 3. Then we have

fEF)=o(F), f(F(F)=0, o(F(F))=aoF)

S(E(F)=o(F)+ f(F)E,m?, f(FE)=f(F)E,M?, o(F,(F)=o(F),
FF(F) =o(F), f7(F;(F)) =0, o(F(F)) = o(F),
SELF) = f(E)E,m”, [T(Fy(F) = f(F)E,m?, o(Fy(F)) =0,
FFEs(F) = f(FYE,m?, [T(Fs(F)==f"(F)&,n", o(Fs)(F)=0,
FFES(FN = fFENE M?, [T (Fs(F)==f"(F)&,m?, o(Fs(F))=0,
FFFF)=f(F)E,m?, [T(F(F))=0, o(F(F))=0,
FF(F)=0, f (F(F)=f"(F)&,n", o(Fg(F))=0.

3. THE SUBSPACES /13, v AND 3, OF J
The first operator Ll Let F€3: Ll (F) =F - 2F3 (F)

By straight forward computations, using Lemmas 4 and 5, we obtain
Lemma 6. Ll is an involutive isometry of I and commutes with the action of U (I’l) X 1. This Lemma and Lemma 1 imply

immediately.

Lemma 7. I, @ Ji", where
31 =L (I)={F eI/F=Fy(F)},
3t =L (3)={F e3/o(F)=0}
The second operator L. Let F € I : L, (F) = F — 2{F,(F) + F,(F)}.

Analogously to Lemma 6 we oblain.

Lemma 8. LZ is an involutive isometry of Sf‘ and commutes with the action of U (n) x 1. We have
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Sf‘ =v3I D A (orthogonally),
v3=L,(31)=4{F € 3/hF =0, o(F) =0},
h3=L5(3))={F € 3/ F,(F)=F,(F)=0}.

Taking into account Lemmas 6, 7 and 8, we obtain a partial decomposition:
Proposition 1. I = Sl D@ v3I D h3. The decomposition is orthogonal and invariant under the action of U (I’l) x1.

Where

The corresponding components of F* € I are

pi(F)=Fy(F), vF = F,(F) + F,(F)—2F;(F), hF.

4. THE SUBSPACE V3 OF 3
The operator L3.Let F EVSZL3(F) =F2(F) —FI(F)

Lemma 9. Lj is an involutive isometry of V3 and commutes with the action of U (7) X 1. We have
v3 =3T3 @ (V3)', where
Sy = [;003) = {[F e I/hF =0. F(x,,£,) =0},
(v3) =3¢ =L (v3) = {F € I/hF =0, F(E,,y,2) =0},
The corresponding components of /7 € V3 are I/ € v3 are F{(F)and F, (F).
The operator L. Let F € Iz =(v3) : L (F)=—F,(F).
Lemma 10. L is an involutive isometry of (V3)' = SSL and commutes with the action of U (71) X 1. We have
(v3)' =37 =NJI3 ® N33,
N33 =L;(33)={F e 3/ F = F,(F)},
N3z =Ly (33)={F €3/ F =—F,(F)}.

The corresponding components of F e (VS)' = Sé‘ are

Where

%{F2 (F)+ F,(F)), %{Fz (F) = Fy(F)}

The operator Ls. Let F € N 33 (F € N33 ) : Ls(F)=—F5(F).
Lemma 11. L5 is an involutive isometry of Nsé' (]\7 Sé‘) and commutes with the action of U/ (n) x 1. We have
N33 =0SI® OKT, N33 =T @ 3,
Where
0S3=L5(N33)={F € 3/F =F,(F)=F5(F)},
QK3 =L5(NI3)={F € 3/F = F;(F)=~Fs(F) }
36 =Ls(NI)={F e 3/ F =—F,(F) = F5(F) }
3, =LY (N33)={Fe3/F=-F,(F)=-F;(F) }.

The corresponding components of F' € NSé' (F € NSé') are

AREY+E(F)+ F(F)+ Fo(F) ) {Fa(F)+ Fy(F) = Fy(F) - Fy(F)

G{FZ(F>—F4<F>+F5<F)—Fﬁ(F) b i{Fz(F>—F4<F>—F5(F>+F6<F) }j

The operator L6‘ Let '€ QSS . L6 (F) =F - 2F7 (F)
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Lemma 12. L6 is an involutive isometry of QSS and commutes with the action of {J (I’l) x 1. We have
QSS = 32 ® 34 (Orthogonally),
Where 3, = Ly (0ST)={F € 3/ F = F,(F) },
34 = Li(0ST) ={F € 3/ F = Fy(F) = F5(F), /(F)E,) =0},
The corresponding components of /' € QSS in 3 5 and 3 4 are

1
F(F), AR (F)+ Fy(F)+ F5 (F) + F(F) = 4F (F) }.
The operator L7 Let F e QKS : L7 (F) =F - ZFS (F)

Lemma 13. L7 is an involutive isometry of QKS and commutes with the action of U (I’l) x 1. We have
QKS =3 3 @ F. 5 (Orthogonally),

Where 33 = L7 (QK3)={F € 3/ F = F(F) },
5 = L5(OKI) = \F € 3/ F = Fy(F)=~F5(F), " (F)€,)=0

The corresponding components of Fe QKS in 3 jand 3 sare

FoF), LR F)+ Fy(F) = F(F) = Fy(F) = 4F,(F)
Using lemma 9 — 13, we get
Proposition 2. VF' = 32 ®D......... D3 g- The decomposition is orthogonal and invariant under the action of
U(n) x 1.The corresponding components of F' € I in Si (i =2, ,8) are

p>(F)=F5(F),

p3(F) = Fy(F),

py(F)= %{F2 (F)+ Fy(F)+ Fs(F) + Fg(F) - 4F;(F) - F;(F)},
ps(F)Z%{Fz(F)JrF4(F)+F5(F)—F6(F)—4F8(F)—F3(F)},
Po(F) = { Fa(F) = Fy(F) + F5(F) = Fy(F) = Fy(F)l,
p,(F)= %{F2 (F)— Fy(F)— F5(F)+ F4(F) - F;(F) },

ps(F) =F(F) - F5(F).
5. THE SUBSPACE 13

Now, let hV = {x eV/ix=hx } Denoting the restrictions of & and ¢ on AV with the same letteres, we obtain the
Hermitian vector space {h V, g, ¢ }of dimension 2n. We identify the elements of h with their restrictions on /} . Then
we can consider the vector space h as the vector space of the tensors hF of type (0, 3) over hV having the properties

hF(x,y,z)=—hF(x,z,y) =—hF (x,dy,¢z)
Forall X, Y,z € hV . The action U(n) X 1 on A3 coincide with the action of U(l’l) on W3 . 1In [1] the vector space
A3 has been decomposed orthogonally into irreducible components invariant under the action U (I’Z) .

Let I € h3. It is not difficult to verify that the forms.

1 {g(hx, hy) f (F)(z) — g(hx,hz) f (F)(y) — g(x,¢9) f (F )(¢Z)}
2(n=1) [+ g(x,¢2) f (F)(dy)

Fy(F)=
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Fio(F) = M{F(x,0,2) + £ (v 2)}
2

F’H(F)zé{F(x,y,z)+F(y,z,x)+F(z,x,y)—F(¢x,¢y,z)—F(q&y,q&z,x)—F(qﬁz,qﬁx,y)}

Fio =5 1F(.3,2) = Figay, )

Are also elements of A3 .
Using the decomposition in [1] we have

Proposition 3. h3= F9 ) FlO @ Fll @ Flz , where
Iy ={F € 3/ F = hF = Fy(F)},
S0 ={F €3/ F =hF = F((F) — Fy(F)},
3, ={Fe3/F=hF =F,(F)},
3y ={F € SF =hF = Fj(F) ~ iy, (F)}.
The decomposition is orthogonal and invariant under the action of {J (I’l) X 1. The corresponding components of F' € J
are
Fo(F), Fio(F)=Fy(F), F,(F), Fp(F)—F(F).
6. APPLICATIONS TO ALMOST r- CONTACT METRIC MANIFOLDS
Let M be an almost r-contact metric manifold with structure (¢, é p N p g ) , where ¢ is a tensor field of type (1,1) 6 pis

a tensor field , 1] p is a 1-form , and g is a Riemannian metric on M such that

p’x=-x+n"(0)E,, g¢&,.&)=1, n" ¢=0
05, =0, g(¢x, dy)=g(x,y)—n" ()M (»).

For arbitrary vector fields X, J on M. For all vector fields X, } on M we denote (3)

F(x,y,2)=g((V,9)y,2).
Let T’ PM be the tangent space to M at p € Mad V=T pM . The restriction £’ p of F given by (3) on V has the
properties (1). We shall call M is of class VVl (i = 1, ...... ,12) if Fp is in the subspace Si (i = 1, ....... ,1 2) for every
PE M. Using the propositions 1, 2 and 3 we obtain 12 basis classes of almost r- contact metric manifolds. Further we give
the defining conditions for these classes. Let F be given by (3) and f , f * , (O be f (F ), f * (F ), @ respectively

defined by (2)
The class VVI .

F(x,y,2)=n"(x)n" (y)o(z) —n" (x)n" (2)o(y).
The class Wz .

Feorn =" e g -nP e o)

This is the class of O — 7 — Sasakian manifolds.
The class W3 .

/" (ip

F(x,p,2)=- ){n P (2)g(udy) —n? (1) g(x.do))

This is the class of & — 7 — Kenmotsu mamfolds.
The class W4 :
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F(x,y,2) =0 (NF@X,Ep.¢2) —n" (2)F (¢, 8, . 4p)

=" (WF(z,§,,x)-n" () F(.§,,x), [f(§,)=0
The class WS:

F(xayaz):np(y)F(¢x=§pa¢Z)_np(Z)F((:bx:épa(py)

=-n"MF(2,8,,%)+n"(2)F (3,8, ), S7(E,)=0
The class W6:

F(xayaz):—UP(J’)F((bxagpa‘f’Z)+UP(Z)F(¢X»§;)»¢)’)

:np(y)F(Zagp:x)_np(Z)F(yagpax)
The class W7:

F(xayaz):—np(y)F((bx:gp:‘/’Z)+77p(Z)F(¢x95pa¢y)

=" WMF(z,E,,x)+n" (2)F (.,
The class WS:
F(hx,hy,hz)=F(x,y,5,)=0
The class W9 :
F(&,,y,2)=F(x,y,6,)=0
1
F(x,,2)= m[{gwx,@)ﬂz) — g(gn.g2) f ()}~ g(x. )/ (d2) + g (x.d2) £ (9)]
The class VVIO :
F(,,y,2)=F(x,y,6,)=0
F(ge,dy,z) — F(x,y,2)=0, f=0
The class VVH :
F(&,,y,2)=F(x,y,6,)=0
F(x,x,z)=0
The class le :
F(5y,»,2)=F(x,,5,)=0
F,y,z2)+ F(y,z,x)+ F(z,x,y)=0
The class of cosymplectic manifolds is characterized by £/ = (). This class is contained in all VVI (i =1,2,...... ,12). An

almost r- contact metric manifold M belongs to two classes VVZ , Wj (i E= ] ) iff M is cosymplectic.
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