International Journal of Engineering Research And Management (IJERM)
ISSN : 2349- 2058, Volume-02, Issue-06, June 2015

A Technique for Conversion of Regular Expression to
Finite Automata and Vice-versa

Ashwani, Shabnam Sangwan, Sunita Kumari

Abstract— The theory of computation is the branch of
computer science and mathematics that deals with
whether and how efficiently problems can be solved on a
model of computation using an algorithm. In theoretical
computer science, automata theory is the study of
abstract machines and the computational problems that
can be solved using these abstract machines. These
abstract machines are called automata. Finite automata
can be deterministic and non-deterministic. Every
regular language that is described by non-deterministic
finite automata can also be described by deterministic
finite automata. Regular expressions [6] also denote
regular languages, which consists of strings of particular
type. The patterns of strings described by regular
expression are exactly same as what can be described by
finite automata. It means every formal language defined
by any finite automata is also defined by a regular
expression.

Keywords— Finite Automaton, Regular Grammar, Regular
Language, Kleen Closure

I. INTRODUCTION

Regular expressions are used to represent certain set of string
in algebraic manner. Regular expressions are widely used in
the field of compiler design, text editor, search for an email-
address, grep filter of unix, train track switches, pattern
matching ,context switching and in many areas of computer
science. The demand of converting regular expression into
finite automata and vice versa motivates research into some
alternative so that time taken for above is minimized.

For conversion of deterministic finite automata to regular
like
method, Brzozowski Algebraic method and state elimination

expression, several techniques Transitive closure
method have been proposed. None of the above specified
technique is able to find smallest regular expression. Our
purpose is to find the smallest regular expression equivalent
to given deterministic finite automata. State elimination
approach is the most widely used and efficient approach for
converting deterministic finite automata to regular
expression.

The presented paper investigates and compares different
techniques used for converting deterministic finite automata
to regular expression. Brief comparisons amongst different

techniques are presented in this review paper.

Manuscript received June 09, 2015

Ashwani, CSE Deptt, SKITM, Bahadurgarh, India

Shabnam Sangwan, CSE Deptt, SKITM, Bahadurgarh, India
Sunita Kumari, CSE Deptt, PDMCE, Bahadurgarh, India

62

II. LITERATURE REVIEW

In 1956, S. C. Kleen [21] By using the Transitive Closure
method he converted DFAs to regular expressions. He also
proved the equivalence of finite automata and regular
expressions. In 1964, Brzozowski [19] introduced new
concept of derivatives of regular exression by expanding
Kleene’s method. Then in 1987, G. Berry and R. Sethi[14]
brought Brzozowski’s paper to the forefront. In 2001,
Ding-Shu Du [2] devised the state removal method. The later
Linz [8] presents a more straightforward method. In context
with the conversion problems, many different approaches and
respective algorithms had been introduced. In 1993, Klein [22]
enumerated an algorithm, then, in 2001 Wilke [24] translated
regular expressions into small e-free nondeterministic finite
automata. Geffert [23] in 2003 converted binary regular
expressions into nondeterministic e-free automa with o(nlogn)
transitions. Yamamoto, H. [25] in 2005 introduced a new
concept of finite automata corresponding to semi extended
regular expressions.

III.BASIC DEFINITIONS

[A] Deterministic finite automaton (DFA)

Deterministic finite automaton (DFA) is a finite state machine
accepting finite strings of symbols. For each state, there is a
transition arrow leading out to a next state for each symbol.

Deterministic finite automata (DFA) can be defined by
S-tuples (Q, Z, 3, qo, F), where

Q is a finite set of states

¥ is a finite set of symbols

d is the transition function, that is, 6: Q x £ — Q.

qo is the start state

F is a set of states of Q (i.e. FEQ) called accept states.

Transition functions can also be represented by transition
table as shown in table 1.

Table 1: Transition Table representing transition
function of DFA

State (Q) Next State &(g.a)
[§) 1
1 2
2 2

www.ijerm.com



A Technique for Conversion of Regular Expression to Finite Automata and Vice-versa

A finite automata is represented by ({0, 1, 2}, {a}, 6, {0},
{2}) where, 6 is shown in the table above.

Transition function can also be represented by transition
diagram as shown below in figure 1.

o ; ° ; @

Figure 1: Deterministic finite automata corresponding to
table 1.

|B] Non-deterministic Finite Automata

A Non-deterministic finite automata (NFA) is same as DFA
except the transition function. Transition function in NFA is
defined as: Q x ¥ — 2Q. A Non-deterministic finite
automaton (NFA) [9] is a finite state machine where for each
pair of state and input symbol there may be more than one
next state.

Following figure 2 shows non-deterministic finite automata
accepting all the strings terminating with 01 and in which state
A has two transitions for same input symbol 0.

0.1
(3
(O-2(2{(0)

Figure 2: An example of non-deterministic finite automata.

[C] Regular Expression

A regular expression (RE) is a pattern that describes some set
of strings. Regular expression over a language can be defined
as:

1) Regular expression for each alphabet will be represented
by itself. The empty string (€) and null language (¢) are
regular expression denoting the language {€} and {¢}
respectively.

2) If E and F are regular expressions denoting the languages
L(E) and L(F) respectively, then following rules can be
applied recursively.

a. Union of E and F will be denoted by regular

expression E+F and representing language L(E) U
L(F).

63

b. Concatenation of E and F denoted by EF and
representing language L(E*F) = L(E) * L(F).

c. Kleene closure will be denoted by E* and represent
language (L(E))*.

Any regular expression can be formed using 1-2 rules only.

IV. CONVERSIONS BETWEEN REGULAR EXPRESSION &
AUTOMATA

This

converting deterministic finite automata to regular expression

section describes different techniques used for
and vice versa.

[A] Conversion of DFA to RE
Kleene proves that every RE has equivalent DFA and vice
versa. On the basis of this theoretical result, it is clear that
DFA can be converted into RE and vice versa using some
algorithms or techniques. For converting RE to DFA, first we
convert RE to NFA(Thomson Construction) and then NFA is
converted into DFA(Subset construction).For conversion of
DFA to regular expression, following methods have been
introduced.

= Transitive closure method

= Brzozowski Algebraic method

= State elimination method

[A1] Transitive Closure Method

Kleene's transitive closure method [2, 12] defines regular
expressions and proves that there is equivalent RE
corresponding to a DFA. Transitive closure is the first
mathematical technique, for converting DFAs to regular
expressions. It is based on the dynamic programming
technique. In this method we use Rkij which denotes set of all
the strings in X* that take the DFA from the state q; to g;
without entering or leaving any state higher than q,. There are
finite sets of Rkij so that each of them is generated by a simple

regular expression that lists out all the strings.

Consider the DFA given in figure 3 and applying transitive
closure method on it.

Figure 3: DFA for the language having odd number of 0’s

www.ijerm.com



International Journal of Engineering Research And Management (IJERM)

I 0 _ 0 _ 0 _

111—1+c r22—1+€ r12_0 rzL—O
1 0 0 0~ _ 0 _ o R

¥ = Ey Tyl w=04(1+eg 0

0, 0% _0 *
Foy = Tuy Ty (Th3) Tyy =(1F€) +0(1+e) 0

s2 1 1 1.*% 1
rp, =Tt 1,0y, ry

(1+€) 0(1+e+01°0)
r;=(1)’o(1+01°0)
L(M)=L(r %)

[A2] Brzozwski Algebraic Method

Brzozowski method [20] is a unique approach for converting
deterministic finite automata to regular expressions. In this
approach first characteristic equations for each state are
created which represent regular expression for that state.
Regular expression equivalent to deterministic finite
automata is obtained after solving the equation of R (regular
expression associated with starting state ).

Consider the DFA in the following figure 4:

Figure 4: DFA for strings with an odd no of 1’s.
Characteristics equations are as follow:

A=0A+1B
B=1A+0B t¢

Solving these equations by Arden’s theorem

B=1A+0B+c=0B + (1A + c)=0*(1A + ¢)
B= 0*(1A) + 0%(c) = 01*A + 0*

A=0A+ 1B=0A + [(0*1A + 0%) =
0A + 10*1A + 10*

A= (0 + 10*1)*(10*) (Using Arden’s rule)
[B] Conversion of RE to FA

It turns out that every Regular Expression has an equivalent
NFA and vice versa. There are multiple ways to translate RE
into equivalent NFA’s but there are two main and most
popular approaches. The first approach and the one that will
be used during this project is the Thompson algorithm and the
other one is McNaughton and Yamada’s algorithm.

[B1] Thompson’s algorithm

64

ISSN : 2349- 2058, Volume-02, Issue-06, June 2015

In 1968, Thompson introduced the multiple-state simulation
approach. In this approach, the states of the NFA were
represented by small machine-code sequences, and the list of
possible states was just a sequence of function call
instructions. Thompson’s algorithm parse the input string
(RE) using the bottom-up method, and construct the
equivalent NFA. The final NFA is built from partial NFA’s, it
means that the RE is divided in several subexpressions, in our
case every regular expression is shown by a common tree, and
every subexpression is a subtree in the main common tree.
Based on the operator the subtree is constructed differently
which results on a different partial NFA construction. For
example the NFA for matching a single character look like:

4 ——@)

Figure 5: Automaton that represent a single character ‘a’ (a)

The concatenation is constructed by connecting the final
arrow of first expression to the first node of second
expression:

o — 1 -
i e b
Figure 6: Automaton that represents the concatenation of two
characters, ‘a’ & ‘b’ (ab)
The alternation of alb is constructed by adding a new state

with a choice of first expression and another choice to second
expression:

b
i
&
Figure 7: Automaton that represents the union of two
characters, ‘a’ and ‘b’ (alb)

The loops as a* or a+ are almost similar, and “at+” can be
written as “aa™”, so the NFA graph looks like:

E¢'—:-.1'

n ] 4

| L (5]

a

Figure 8: Automata representing a*

[B2] McNaughton and Yamada Algorithm

www.ijerm.com



A Technique for Conversion of Regular Expression to Finite Automata and Vice-versa

McNaughton and Yamada in 19 give an alternative approach,
to avoid unlabeled arrows instead of allowing NFA states to
have multiple outgoing arrows with the same label. It makes
diagrams for subexpressions in a recursive way and then puts
them together. According to Storer and Chang the
McNaughton and Yamada’s NFA has a distinct state for every
character in RE except the initial state. That is why this is
viewed as an alternative approach to Thompson;s algorithm.

The McNaughton and Yamada’s algorithm in the initial phase
creates disconnected initial and accepted state:

T

Figure 9: Automaton representing Empty set

CONCLUSION

This paper work provides an insight into the various
approaches used for conversion of deterministic finite
automata to regular expression and vice versa. Comparisons
between different techniques for conversion of DFA to RE are
carried out. Researching this project has shown that the
conversion of regular expressions to DFA and back again are
processes that are well understood and are implementable
without any great difficulty. The most time-consuming part of
the project was coding the parser for the regular expression.
This is because while regular expressions define regular
languages, they themselves are not regular and must be
described by context-free grammars.

ACKNOWLEDGMENT

I would like to thanks my guide Ms. Shabnam Sangwan, who
suggested me to work and research. Her recommendations,
innovative ideas and constructive criticism contributed to
make the success of this report. Her numerous suggestions,
comments, and advice have made this entire paper possible.

REFERENCES

[1] Alfred V. Aho, “Constructing a Regular Expression from a
DFA”, Lecture notes in Computer Science Theory,
September 27, 2010, Available at
http://www.cs.columbia.edu/~aho/cs3261/lectures.

[2] Ding-Shu Du and Ker-I Ko, “Problem Solving in Automata,
Languages, and Complexity”, John Wiley & Sons, New
York, NY, 2001.

[3][Gelade, W., Neven, F., “Succinctness of the complement
and intersection of regular expressions”, Symposium on
Theoretical Aspects of Computer Science. Dagstuhl
Seminar Proceedings, vol. 08001, pages 325-336. IBFI
(2008).

[4]Janusz A. Brzozowski, “Derivatives of regular
expressions”, J. ACM,11(4) pages 481-494, 1964.

[5]J. J. Morais, N. Moreira, and R. Reis, “Acyclic automata
with easy-to-find short regular expressions”, In 10th

65

Conference on Implementation and Application of
Automata, volume 3845 of LNCS, pages 349-350,
France, June 2005. Springer.

[6]K. Ellul, B. Krawetz, J. Shallit, and M.Wang, “Regular
expressions: New results and open problems”, Journal of
Automata, Languages and Combinatorics, 10(4):pages
407- 437, 2005.

[7] Larkin, H., “Object oriented regular expressions”, 8th IEEE
International Conference on Computer and Information
Technology , vol., no., pages 491-496,8-11 July,2008

[8]Peter Linz, Formal Languages and Automata (Fourth
Edition), Jones and Bartlett Publishers, 2006

[9] Michael Sipser, Introduction to the Theory of Computation,
Thomson Course Technology, 2006

[10] A. Aho, R. Sethi & J. D. Ullman (1986): Compilers:
Principles, Techniques, and Tools. Addison Wesley.

[11] A. V. Aho, J. E. Hopcroft & J. D. Ullman (1974): The
Design and Analysis of Computer Algorithms.
Addision-Wesley.

[12] A. V. Aho & J. D. Ullman (1972): The Theory of Parsing,
Translation and Compiling. I, Prentice-Hall.

[13] V. Antimirov (1996): Partial derivatives of regular
expressions and finite automaton constructions.
Theoretical Computer Science 155(2), pp. 291-319.

[14] G. Berry & R. Sethi (1986): From Regular Expressions to
Deterministic Automata. Theoretical Computer Science
48(3), pp. 117-126.

[15] H. Gruber & M. Holzer (2013): Provably Shorter Regular
Expressions From Finite Automata. International Journal
of Foundations of Computer Science 24(8), pp.
1255-1279.

[16] S. Lombardy, Y. R’egis-Gianas & J. Sakarovitch (2004):
Introducing VAUCANSON. Theoretical Computer
Science 328(1-2), pp. 77-96

[17] Z. Manna (1974): Mathematical Theory of Computation.
McGraw-Hill

[18] Robert McNaughton & Hisao Yamada (1960): Regular
expressions and state graphs for automata. IRE
Transactions on Electronic Computers EC-9(1), pp.
39-47

[19] G. Berry and R. Sethi. From regular expressions to
deterministic automata. TCS: Theoretical Computer
Science, 48:117-126, 1987.

[20] Janusz A. Brzozowski. Derivatives of regular
expressions. J. ACM, 11(4):481-494, 1964.

[21] S. C. Kleene. Representation of events in nerve nets and
finite automata. In Automata studies, pages 3—40. Ann. of
Math. Studies No. 34, Princeton University Press,
Princeton, NJ, 1956.

[22] Bruggemann-Klein A. [1993]. “Regular expressions into
finite automata”. Theoretical Computer Science. vol. 120,
no. 2, pp. 197-213.

[23] [23] Geffert, V. [2003]. “Translation of binary regular
expressions into nondeterministic e-free automata with
o(nlogn) transitions”. Journal of Computer and System
Sciences. vol. 66, no. 3, pp. 451-472.

[24] Hromkovic J., S. Seibert, and T. Wilke [2001].
“Translating regular expressions into small e-free
nondeterministic finite automata”. Journal of Computer
and System Sciences. vol. 62, no. 4, pp. 565-588.

[25] Yamamoto, H. [2005]. “New finite automata
corresponding to semi extended regular expressions”.
Systems and Computers in Japan. vol. 36, no. 10, pp.
54-61.

www.ijerm.com



International Journal of Engineering Research And Management (IJERM)
ISSN : 2349- 2058, Volume-02, Issue-06, June 2015

Author Profile

Ashwani, received the B.Tech degree in Computer Science &
Engineering from Tekmanchand College of Engineering, Sonepat
affiliated to DCRUST University, Sonepat (Haryana) and pursuing
M.Tech (2013 to 2015 batch) from Sat Kabir Institute of
Technology and Management (SKITM), Bahadurgarh affiliated to
Mabharshi Dayanand University, Rohtak (Haryana). Currently I am
doing research on RE and their acceptance tool Finite Automata.

Shabnam Sangwan, received the B.Tech degree in Computer
Science & Engineering from Maharaja Surajmal Institute of
Technology (MSIT), affiliated to Guru Gobind Singh Indraprastha
University, New Delhi and M.Tech degree in Computer Science &
Engineering from PDM college of Engineering, affiliated to
Maharshi Dayanand University, Rohtak (Haryana) in 2011 and
2013 batch respectively. She is presently working in Sat Kabir
Institute of Technology and Management (SKITM), Bahadurgarh,
Haryana, India and had associated with PDM polytechnic,
Bahadurgarh earlier to this. She has 12 publications in international
journal and 5 publications in conferences. She is having
membership of two international journals.

)

Sunita Kumari, received the B.Tech and M.Tech degree in
Computer Science & Engineering from PDM college of
Engineering, affiliated to Maharshi Dayanand University, Rohtak
(Haryana) in 2003 and 2008 batch respectively. She is presently
working in PDM Group of Institutions Bahadurgarh, Haryana,
India. She has a teaching experience of 11 years. She has 20
publications in national and international journal and 12
publications in conferences. She has guided 20 students for M.Tech
dissertation. She is having membership of various international
journals and professional bodies.

66 www.ijerm.com



