International Journal of Engineering Research And Management (IJERM)

ISSN : 2349- 2058, Volume-02, Issue-07, July 2015

A Review: Lempel-Ziv (LZ'78) Coding

Harman Jot, Mrs. Rupinder Kaur

Abstract— Hashing algorithm named two-level hashing
that enables fast longest match searching from a sliding
dictionary, and the other uses suffix sorting. The former
was suitable for small dictionaries and it significantly
improves the speed of gzip, which uses a naive hashing
algorithm.

A similar notion of “finite-state encryptability” of an
individual plain-text sequence was defined, as the
minimum asymptotic key rate that must be consumed by
finite-state encrypters so as to guarantee perfect secrecy
in a well-defined sense. Our main basic result was that the
finite-state encryptability is equal to the finite-state
compressibility for every individual sequence. This is in
parallelism to Shannon’s classical probabilistic
counterpart result, asserting that the minimum required
key rate is equal to the entropy rate of the source.

Gipfeli a high-speed compression algorithm that uses
backward references with a 16-bit sliding window, based
on 1977 paper by Lempel and Ziv, enriched with an
ad-hoc entropy coding for both literals and backward
references.

I. INTRODUCTION

Over recent years improvements in memory bandwidth have
lagged behind advancesin CPU performance. This puts other
parts of the system under pressure and often makes I/O
operations a bottleneck. Gipfelil is a new high-speed
compression algorithm which tries to address this issue by
trading CPU performance used in data compression for
improvements in I/O throughput by reducing the amount of
data transferred. Its goal is to decrease both running-time and
memory usage. An overview of throughput of different I/O
components of a computer.

There are several other high-speed compression algorithms.
The main competitors are Snappy [1] (currently being the key
part of the Google infrastructure and sometimes referred to
also as Zippy), QuickLZ [2] and FastLZ [3]. The goal of this
work was to have the algorithm with the best compression
ratio in this category. Gipfeli uses backward references, as
introduced by Lempel and Ziv in their famous 1977 paper [4],
with very light-weight hashing and a 16-bit sliding window.
This has already been suggested in the previous work of
Williams [5], Fiala and Greene. The algorithm consists of two
main parts. The first part, LZ77, builds on the implementation
in Snappy with several improvements. The main difference
was the second part, which was rare in the area of high-speed
compression algorithms: it is an application of entropy
coding. Gipfeli uses a static entropy code for backward

Manuscript received July 12, 2015

Harman Jot, M.Tech, Department of Electronics and Communication,
Punjabi University, Patiala, Punjab, India

Mrs. Rupinder Kaur, Department of Electronics and Communication,
Punjabi University,Patiala, Punjab, India

37

references and an ad-hoc entropy code for literals based on
sampling the input. Sampling is necessary, because there is
not enough time and memory to read the whole input in order
to gather all the statistics and build a conversion table. They
also could not use Huffman codes or arithmetic coding,
because of their slow performance.

The paradigm of individual sequences and finite-state
machines (FSMs), as an alternative to the traditional
probabilistic modeling of sources and channels, has been
studied and explored quite extensively in several
information-theoretic problem areas, including data
compression, source/channel simulation [6], classification
[7], [8], prediction denoising, and even channel coding [8],
[9], just to name very few representative references out of
many more. On the other hand, it is fairly safe to say that the
entire literature on information-theoretic security, starting
from Shannon’s classical work [8] and ending with some of
the most recent work in this problem area for surveys as well
as references therein), is based exclusively on the
probabilistic setting

To the best of knowledge, the only exception to this rule is an
unpublished memorandum by Ziv [5]. In that work, the
plain-text source to be encrypted, using a secret key, is an
individual sequence, the encrypter is a general block encoder,
and the eavesdropper employs an FSM as a message
discriminator. Specifically, it is postulated in[1] that the
eavesdropper may have some prior knowledge about the plain
text that can be expressed in terms of the existence of some set
of “acceptable messages” that constitutes the a priori level of
uncertainty (or equivocation) that the eavesdropper has
concerning the plaintext message: The larger the acceptance
set, the larger the uncertainty. Next, it was assumed that there
exists an FSM that can test whether a given candidate
plain-text message is acceptable or not: If and only if the FSM
produces the all-zero sequence in response to that message,
then this message is acceptable.

Perfect security was then defined as a situation where the size
of the acceptance set is not reduced (and hence neither is the
uncertainty) in the presence of the cryptogram. The main
result in [10] is that the asymptotic key rate needed for
perfectly secure encryption in that sense cannot be smaller (up
to asymptoticallyvanishing terms) than the Lempel-Ziv (LZ)
complexity of the plain-text source [11]. The lower bound
was obviously asymptotically achieved by one-time pad
encryption of the bit stream obtained by LZ data compression
of the plain-text source. This was in parallelism to Shannon’s
classical probabilistic counterpart result, asserting that the
minimum required key rate is equal to the entropy rate of the
source.

Many data compression schemes have been developed, and
they were selected according to their compression speed,
decompression speed, compression performance, memory
requirements, etc. The LZ77 compression scheme [12] is a
lossless compression scheme. Now it becomes a basis of

www.ijerm.com

A Review: Lempel-Ziv (LZ'78) Coding

many compression schemes. Its de-compression speed is very
fast and the memory required is small.

The LZ77 scheme compresses a string from left to right. It
first finds a prefix of a string to be encoded from the string
already encoded called dictionary. Then the prefix is encoded
by its length and the distance between it and the string in the
dictionary. The size of the dictionary is usually limited
because of memory and compression time limitations, and
therefore the dictionary stores only the newer part of the
string. This type of dictionary is called a sliding dictionary.
To compress a string well, we have to find the longest match
string in the dictionary. It is also important to find the nearest
one among the longest match strings because the nearest one
is encoded in fewer bits. The most time-consuming task in the
LZ77 compression is to find the longest match strings. Hence
the main topic of this paper is to find them quickly. Though
the LZ77 has significant features described above, it is
difficult to implement a fast encoder in practice. The LZ77
compression using the sliding dictionary can be done in linear
time [13][14]. However, the algorithm requires huge memory
and it is not fast in practice. Another problem is that it cannot
find the nearest string in the dictionary. This causes
compression loss.

The problems can be solved in part by using hashing
algorithms. Almost all programs using the LZ77 scheme, for
example gzip, Info-ZIP, PKZIP, lha and arj, use hashing data
structures because of practical speed and memory efficiency.
Among them, gzip [15] is a typical and commonly used
implementation of the LZ77 scheme. Though the hashing
algorithms are fast enough for many strings, they become
extremely slow for some strings. This is a reason to consider
new algorithms for the LZ77.

II. WORK DONE

The benchmarks in Gipfeli can achieve compression ratios
that are 30% better than Snappy with slow-down being only
around 30%. Gipfeli achieves even higher speed for html
content and remote procedure calls than for text content. they
argue, using the I/0 data from the introduction, that once the
compression algorithm is fast enough, i.e. computations are
bound by external I/O costs, they needed to compress as
densely as possible. At that point, improvements in the
compression ratio are more important than running time. The
encouraging outcome of the benchmarks led us to test Gipfeli
in a real-world setting to support our theoretical assumptions
with practical experiment. Our case study was MapReduce
technology [16] used inside Google to run distributed
computations. A typical computation processes terabytes of
data and runs on thousands of machines. In short, MapReduce
consists of two phases: the first phase, Map, applies some
computation in parallel to all the input items to produce the
intermediate items, which are then merged in the second
phase, Reduce. Currently, Snappy and Zlib are both options
used inside Map Reduce. They replaced Snappy by Gipfeli
and our experiment confirmed their expectations: the
computation was faster (up to 10%) and led to lower RAM
usage. Since Gipfeli can compress better, it was now a
candidate replacement for both Snappy and Zlib (which is
currently used in the situations where a better compression
ratio is needed) in MapReduce. Other plausible applications
are: the replacement of Snappy in Big table technology [17],
which is used to store large amounts of data; and in Google's

38

internal remote procedure calls. Currently, Snappy and Zlib
are both options used inside MapReduce. We replaced
Snappy by Gipfeli and our experiment confirmed their
expectations: the commutationwas faster (up to 10%) and led
to lower RAM usage. Since Gipfeli can compress better, it is
now a candidate replacement for both Snappy and Zlib (which
is currently used in the situations where a better compression
ratio is needed) in Map Reduce. Other plausible applications
are: the replacement of Snappy in Big table technology, which
is used to store large amounts of data; and in Google's internal
remote procedure calls.

Encryption of individual sequences, but our modeling
approach and the definition of perfect secrecy are
substantially different. Rather than assuming that the
encrypter and decrypter have unlimited resources, and that it
was the eavesdropper which has limited resources, modeled in
terms of FSMs, in our setting, the converse is true. They adopt
a model of a finite-state encrypter, which receives as inputs
the plain-text stream and the secret key bit stream, and it
produces a cipher text, while the internal state variable of the
FSM, that designates limited memory of the past plain-text, is
evolving in response to the plain-text input. Based on this
model, they defined a notion of finite-state encryptability (in
analogy to the notions of finite- state compressibility and the
finite-state predictability), as the minimum achievable rate at
which key bits must be consumed by any finite-state encrypter
in order to guarantee perfect security against an unauthorized
party, while keeping the cryptogram decipherable at the
legitimate receiver, which has access to the key. Their main
result is that the finite-state encryptability is equal to the
finite-state compressibility,

A technique called lazy evaluation to improve compression
ratio, encoded a prefix of suffix 5,as a literal r, if1 <12. This
technique is used in gzipand many other programs, and its
effect was analyzed in. It improves compression ratio by
about 0.05 bits/character for both optlz77 and 1z77 with
various dictionary sizes in our experiments. The adaptive
arithmetic code encodes characters and match lengths
according to their frequencies which were updated each time a
character or a length is en- coded. We call this program
optlz77 where opt means that this program finds the closest
longest matches. Its performance will be close to the best
program using the LZ77 scheme. They also use a program
named 1z77. Their difference is that 1277 may not find the
closest one among the longest match strings in the longest
matchfunction. The function returns the first matched string
among strings that match p. Therefore it may not find the
closest longest match string and the compression ratio will
decrease. Because the optlz77 and the 1z77 use the lazy
evaluation, their compression speed is a little slower than the
1277 (sort+longest match) and the 1277 (sort only) in
respectively. The compression ratio of optlz77 is better than
that of 1277, which implies that finding the nearest longest
match is important even if we use large dictionaries. The
compression ratio of gzip is better than optlz77 with a
dictionary of 32Kbytes because encoding of distances in gzip
is optimized for the 32Kbytes window.

The compression ratio of bzip2 decreases faster than that of
optlz77 and 1277 although the sliding window LZ77 is
asymptotically optimal for all finite-alphabet stationary
ergodic sources [16]. Therefore the block sorting has better
compression ratio than the LZ77 for blocks of moderate sizes.

www.ijerm.com

International Journal of Engineering Research And Management (IJERM)

The compression ratio of optlz77 is better than bzip2 if
dictionary size is less than 128Kbytes. In this case, optlz77 is
better than bzip2 in both compression speed and ratio and the
two-level hashing algorithm significantly improves
compression speed.

CONCLUSION

Gipfeli is currently in the alpha phase. The algorithm has not
gone through complete testing, but a few terabytes of data
have been successfully pushed through it. Compared to
Snappy, Quick[1] LZ and Fast LZ, which have been tuned for
several years, Gipfeli is still young. They have open sourced it
to allow additional improvements and optimizations by the
community.

Asymptotically achieved performance by block codes as
follows. Given any vector x™, divide it into blocks and
calculate the corresponding [10]empirical distribution. Let
X™ be a random variable governed by this empirical
distribution.

By increasing the speed of an LZ77-type data compression
scheme. In the LZ77 compression, finding the longest match
string was the most time consuming process. Though the
widely used gzip also uses the LZ77, its compression
algorithm was not optimized. Thereforethe compression
speed of gzip needs to be improved, not only for practical
purposes but also as it is the touchstone of compression
algorithms. They proposed two algorithms for finding the
longest match string. One uses two-level hash and the other
suffix sorting [7].

REFERENCES

R. Lenhardt and J. Alakuijala, "Gipfeli-high speed
compression algorithm," in Data Compression Conference
(DCC), 2012, 2012.

S. Borkar, P. Dubey, K. Kahn, D. Kuck, H. Mulder, S.
Pawlowski and J. Rattner, "Platform 2015: Intel processor
and platform evolution for the next decade," Technology, p.
1, 2005.

A. Lempel, "Cryptology in transition," ACM Computing
Surveys (CSUR), vol. 11, no. 4, pp. 285-303, 1979.

J. C. Kieffer and E.-h. Yang, "Sequential codes, lossless
compression of individual sequences, and Kolmogorov
complexity," Information Theory, IEEE Transactions on, vol.
42, no. 1, pp. 29-39, 1996.

J. Ziv and A. Lempel, "A universal algorithm for sequential
data compression," IEEE Transactions on information
theory, vol. 23, no. 3, pp. 337-343, 1977.

T. Bell and D. Kulp, "Longest-match string searching for
ziv-lempel compression," Software: Practice and Experience,
vol. 23, no. 7, pp. 757-771, 1993.

Y. Liang, H. V. Poor and others, "Information theoretic
security," Foundations and Trends in Communications and
Information Theory, vol. 5, no. 4--5, pp. 355-580, 2009.

Y. Lomnitz and M. Feder, "Universal communication over
modulo-additive channels with an individual noise
sequence," 2010.

A. Martin, N. Merhav, G. Seroussi and M. J. Weinberger,
"Twice-universal simulation of Markov sources and
individual sequences," Information Theory, IEEE
Transactions on, vol. 56, no. 9, pp. 4245-4255, 2010.

N. Merhav, "Perfectly secure encryption of individual
sequences," Information Theory, IEEE Transactions on, vol.

[1]

[10]

39

[11]

[12]

[13]

[14]

[15]

[16]

[17]

ISSN : 2349- 2058, Volume-02, Issue-07, July 2015

59, no. 3, pp. 1302-1310, 2013.

Y. Lomnitz and M. Feder, "Communication over Individual
Channels--a general framework," arXiv preprint
arXiv:1203.1406, 2012.

P. K. Pearson, "Fast hashing of variable-length text strings,"
Communications of the ACM, vol. 33, no. 6, pp. 677-680,
1990.

A. D. Wyner and J. Ziv, "The sliding-window Lempel-Ziv
algorithm is asymptotically optimal," Proceedings of the
IEEE, vol. 82, no. 6, pp. 872-877, 1994.

U. Manber and G. Myers, "Suffix arrays: a new method for
on-line string searches," siam Journal on Computing, vol. 22,
no. 5, pp. 935-948, 1993.

M. Burrows and D. J. Wheeler, "A block-sorting lossless data
compression algorithm," 1994.

N. J. Larsson, "Extended application of suffix trees to data
compression," in Data Compression Conference, 1996.
DCC'96. Proceedings, 1996.

N. J. Larsson and K. Sadakane, Faster suffix sorting,
Citeseer, 1999.

www.ijerm.com

