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Software Process Control on Time Domain Data: Rayleigh
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Abstract— Software reliability process can be monitored
efficiently by using Statistical Process Control (SPC). It
assists the software development team to identify failures
and actions to be taken during software failure process
and hence, assures better software reliability. In this
paper we propose a control mechanism based on the
cumulative quantity between observations of time domain
failure data using mean value function of Rayleigh
distribution, which is based on Non Homogenous Poisson
Process (NHPP). The Maximum Likelihood Estimation
(MLE) method and Regression methods is used to derive
the point estimators of a two-parameter Rayleigh
distribution.

Index Terms— Software Engineering, Statistical Reliability.
Statistical Process Control, Software reliability, Rayleigh
Distribution, Mean Value function, Probability limits, Control
Charts

I. INTRODUCTION

Software reliability assessment is important to evaluate and
predict the reliability and performance of software system,
since it is the main attribute of software. To identify and
eliminate human errors in software development process and
also to improve software reliability, the Statistical Process
Control concepts and methods are the best choice. SPC
concepts and methods are used to monitor the performance of
a software process over time in order to verify that the process
remains in the state of statistical control. It helps in finding
assignable causes, long term improvements in the software
process. Software quality and reliability can be achieved by
eliminating the causes or improving the software process or
its operating procedures (Kimura et al., 1995).

The most popular technique for maintaining process control is
control charting. The control chart is one of the seven tools for
quality control. Software process control is used to secure the
quality of the final product which will conform to predefined
standards. In any process, regardless of how carefully it is
maintained, a certain amount of natural variability will always
exist. A process is said to be statistically “in-control” when it
operates with only chance causes of variation. On the other
hand, when assignable causes are present, then we say that the
process is statistically “out-of-control.”

The control charts can be classified into several categories, as
per several distinct criteria. Depending on the number of
quality characteristics under investigation, charts can be

Manuscript received Aug 01, 2015

Mrs P.Padmaja, Asso.Professor, A.S.R.I.T College, West Godavari

Dr G.Krishna Mohan, Assoc. Professor, Dept. of CSE, KL University
Vaddeswaram, Guntur

Dr. R.Satya Prasad, Assoc. Professor, Dept. of CSE Acharya Nagrjuna
University

53

divided into univariate control charts and multivariate control
charts. Furthermore, the quality characteristic of interest may
be a continuous random variable or alternatively a discrete
attribute. Control charts should be capable to create an alarm
when a shift in the level of one or more parameters of the
underlying distribution or a non-random behavior occurs.
Normally, such a situation will be reflected in the control
chart by points plotted outside the control limits or by the
presence of specific patterns. The most common non-random
patterns are cycles, trends, mixtures and stratification
(Koutras et al., 2007). For a process to be in control the
control chart should not have any trend or nonrandom pattern.
SPC is a powerful tool to optimize the amount of information
needed for use in making management decisions. Statistical
techniques provide an understanding of the business
baselines, insights for process improvements, communication
of value and results of processes, and active and visible
involvement. SPC provides real time analysis to establish
controllable process baselines; learn, set, and dynamically
improves process capabilities; and focus business areas which
need improvement. The early detection of software failures
will improve the software reliability. The selection of proper
SPC charts is essential to effective statistical process control
implementation and use. The SPC chart selection is based on
data, situation and need (MacGregor, 1995). Many factors
influence the process, resulting in variability. The causes of
process variability can be broadly classified into two
categories, viz., assignable causes and chance causes.

The control limits can then be utilized to monitor the failure
times of components. After each failure, the time can be
plotted on the chart. If the plotted point falls between the
calculated control limits, it indicates that the process is in the
state of statistical control and no action is warranted. If the
point falls above the UCL, it indicates that the process
average, or the failure occurrence rate, may have decreased
which results in an increase in the time between failures. This
is an important indication of possible process improvement. If
this happens, the management should look for possible causes
for this improvement and if the causes are discovered then
action should be taken to maintain them. If the plotted point
falls below the LCL, It indicates that the process average, or
the failure occurrence rate, may have increased which results
in a decrease in the failure time. This means that process may
have deteriorated and thus actions should be taken to identify
and the causes may be removed. It can be noted here that the
parameter a, b should normally be estimated with the data
from the failure process.

The control limits for the chart are defined in such a manner
that the process is considered to be out of control when the
time to observe exactly one failure is less than LCL or greater
than UCL. Our aim is to monitor the failure process and detect
any change of the intensity parameter. When the process is
normal, there is a chance for this to happen and it is commonly
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known as false alarm. The traditional false alarm probability
is to set to be 0.27% although any other false alarm
probability can be used. The actual acceptable false alarm
probability should in fact depend on the actual product or
process (Swapna and Trivedi, 1998).

II. LITERATURE SURVEY

This section presents the theory that underlies Rayleigh
distribution and maximum likelihood estimation for complete
data. If ‘t" is a continuous random variable with

pdf: f(t;@l,ez, ,Qk) . Where 91,92, ,Hk are k
unknown constant parameters which need to be estimated,
and cdf: F (t) . Where, The mathematical relationship

d(F(t))
dt

denote the expected number of faults that would be detected
given infinite testing time in case of finite failure NHPP
models. Then, the mean value function of the finite failure
NHPP models can be written as: m(¢) = af'(t) . where, F(t)
is a cumulative distribution function. The failure intensity
function A(¢) in case of the finite failure NHPP models is

given by: A(¢) = aF"'(¢) (Pham, 2006).

between the pdfand cdfis givenby: f(¢) = .Let‘a’

2.1 NHPP model

The Non-Homogenous Poisson Process (NHPP) based
software reliability growth models (SRGMs) are proved to be
quite successful in practical software reliability engineering
(Musa et al., 1987). The main issue in the NHPP model is to
determine an appropriate mean value function to denote the
expected number of failures experienced up to a certain time
point. Model parameters can be estimated by using Maximum
Likelihood Estimate (MLE). Various NHPP SRGMs have
been built upon various assumptions. Many of the SRGMs
assume that each time a failure occurs, the fault that caused it
can be immediately removed and no new faults are
introduced. Which is usually called perfect debugging.
Imperfect debugging models have proposed a relaxation of
the above assumption (Ohba, 1984; Pham 1993).

In software reliability, the initial number of faults and the fault

detection rate are always unknown. Let {N (t ),t > 0} be the

cumulative number of software failures by time ‘t’. m(t) is the
mean value function, representing the expected number of

software failures by time ‘t’. ),(t ) is the failure intensity
function, which is proportional to the residual fault content.
2
Thus m(t ) =a(l—e™") . where ‘a’ denotes the initial
number of faults contained in a program and ‘b’ represents the
fault detection rate. The maximum likelihood technique can
be used to evaluate the unknown parameters. In NHPP SRGM
l(t ) can be expressed in a more general way as

2 (1) =220

content function which includes the initial and introduced

where a(t ) is the time-dependent fault

faults in the program and b(t ) is the time-dependent fault
detection rate. A constant a(t ) implies the perfect debugging

assumption, i.e no new faults are introduced during the
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debugging process. A constant b(t ) implies the imperfect

debugging assumption, i.e when the faults are removed, then
there is a possibility to introduce new faults.

2.2 Rayleigh distribution

In recent years the Weibull distribution (Weibull, 1951) has
become more popular as a reliability function. It is named
after the Swedish scientist Waloddi Weibull. The Weibull
distribution has a position of importance in the field of
reliability and life testing because of its versatility in fitting
time-to-failure distributions. Many researchers considered the
distribution and worked on it. Some of them are Kao (1958),
Dubey (1963), Menon (1963). The three parameters of the

Weibull distribution are@, 3 and y . Where 6 and 3 are
known as the scale, shape parameters and ¥ is known as the

location parameter. These parameters are always positive. It
is probably the most widely used family of failure
distributions, mainly because by proper choice of its shape
parameter f3, it can be used as an Increasing Failure Rate for f
> 1, Decreasing Failure Rate for # < 1, or Constant Failure
Rate for # = 1. The Weibull distribution is called Rayleigh
distribution at 8 =2, y = 0, and Exponential distribution at

B =1, ¥ = 0. The cumulative distribution function is:

2
F (t ) =1- ef(bt) The mean value function

2
m(t)za[l—ei(bt) :| . The failure intensity function is

given as: A(f) = 2ab’te ™"

2.3 MLE (Maximum Likelihood) Parameter Estimation

The idea behind maximum likelihood parameter estimation
is to determine the parameters that maximize the probability
(likelihood) of the sample data. The method of maximum
likelihood is considered to be more robust (with some
exceptions) and yields estimators with good statistical
properties. In other words, MLE methods are versatile and
apply to many models and to different types of data. Although
the methodology for maximum likelihood estimation is
simple, the implementation is mathematically intense. Using
today's computer power, however, mathematical complexity
is not a big obstacle. If we conduct an experiment and obtain

,¢y - The likelihood
function [7] may be given by the following product:

N . .
Lt.t,, ,1,16,.60,, .6,)=]]/:6,.6,, .6,) Likeli
i=1

N independent observations, f,,%,,

hood function by using A(t) is: L = e_m(t)H A2)
i<l

The logarithmic likelihood function is given by:
log L = log(e_'”(t)l_[),(ti)j
i=1
= 2 log[a@)]-m(,)
i=1
likelihood (MLE) of

,0, are obtained by maximizing L or A ,

The estimators

0,.0,,

where A is In L . By maximizing /, which is much easier to
work with than L, the maximum likelihood estimators (MLE)

maximum
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of 0,,0,, ,0, are the simultaneous solutions of k
e i : i=1,2,...
quations such as a(A) o’ =1,2,...k
o0,
The parameters ‘a’ and ‘b’ are estimated using iterative
Newton Raphson Method, which is given as
_gx,)
n+l = ¥n
g'(x,)

III. TWO STEP APPROACH FOR PARAMETER
ESTIMATION

The main issue in the NHPP model is to determine an
appropriate mean value function to denote the expected
number of failures experienced up to a certain time point.
Method of least squares (LSE) or maximum likelihood (MLE)
has been suggested and widely used for estimation of
parameters of mathematical models (Kapur et al, 2008).
Non-linear regression is a method of finding a nonlinear
model of the relationship between the dependent variable and
a set of independent variables. Unlike traditional linear
regression, which is restricted to estimating linear models,
nonlinear regression can estimate models with arbitrary
relationships between independent and dependent variables.
The model proposed in this paper is a non-linear and it is
difficult to find solution for nonlinear models using simple
Least Square method. Therefore, the model has been
transformed from non linear to linear. MLE and LSE
techniques are used to estimate the model parameters.
Sometimes, the likelihood equations are difficult to solve
explicitly. In such cases, the parameters are estimated with
some numerical iterative methods (Newton Raphson method).
On the other hand, LSE, like MLE, applied for small sample
sizes and may provide better estimates (Huang and Kuo,
2002).

1. Algorithm for a 2-step approach of parameter

estimation and data as best fit.
e Consider the Cumulative distribution function F'(¢)

and equate to p;,i.e F'(t)=p,  where

1

Pi _n+1

* Express the equated equation F'(¢) = p, as a linear
form, y =mx+b.

¢ Find model parameters of mean value function m(%) .
Where m(t) = aF(t)
oThe initial number of faults a is estimated
through MLE method. Since, it forms a
closed solution.
oThe remaining parameters are estimated
through LSE regression approach.
¢ Find the failure intensity function A(¢) = aF'(¢)
¢ Find likelihood function L
¢ Find the Log likelihood function log L. (Which comes
to be —ve value.)
e The distribution model with the highest —ve value is
the best fit.
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2. LS (Least Square) estimation

LSE is a popular technique and widely used in many fields for
function fit and parameter estimation (Liu, 2011). The least
squares method finds values of the parameters such that the
sum of the squares of the difference between the fitting
function and the experimental data is minimized. Least
squares linear regression is a method for predicting the value
of a dependent variable Y, based on the value of an
independent variable X.

o  The Least Squares Regression Line

Linear regression finds the straight line, called the least
squares regression line that best represents observations in a
bivariate data set. Given a random sample of observations, the
population regression line is estimated by: y =bx+a.
where ,‘a’ is a constant, ‘b’ is the regression coefficient and
‘X’ is the value of the independent variable, and * J ° is the
predicted value of the dependent variable. The least square
method defines the estimate of these parameters as the values
which minimize the sum of the squares between the
measurements and the model. Which amounts to minimizing

N2
the expression: E = Z(Yl - Yl) )

Taking the derivative of E with respect to ‘a’ and ‘b’ and
equating them to zero gives the following set of equations
(called the normal equations):

Z—E:ZNa+2bZXi—2ZY,. =0, and
a

Z—IZ:2bZXi2+2aZXi —2) Y X, =0

The solutions of ‘a’ and ‘b’ are obtained by solving the above
equations. Where, a=Y-bX

po 2 -T)(X -X)
X (x-%)

and

IV. ILLUSTRATING THE MLE METHOD USING THE
RAYLEIGH DISTRIBUTION

4.1 parameter estimation
To estimate ‘a’ and ‘b’ , for a sample of n units (all tested to
failure), first obtain the likelihood function:

L= e_a(l_e*w”)2 ] ﬁ 2ab*t.e” "

i=1
Taking the natural logarithm on both sides, The Log
Likelihood function is given as:

log L =Y log(2ab’te™™ ) —a[l—e "] -
i=1
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Taking the Partial derivative with respect to ‘a’ and equating
to ‘0’
n

e

Taking the Partial derivative with respect to ‘b’ and equating
to‘0’.

_ 2n 2, 2nbtle ) _
Taking the partial derivative again with respect to ‘b’ and
equating to ‘0’.

e 2b°t P

' - _1 ,
g'(b)= 21’{[)2) - 2; QZ - 2’"3 (1 _ ef(hr,, y )_ (1 B ef(bz,, ? )Z

The parameter ‘b’ is estimated by iterative Newton Raphson
Method using b —b — 2(b,) , which is substituted in
£'h,)

n+1 n

finding ‘a’.
4.2 LS Estimation

Procedure to find parameter ‘b’ using regression

approach.

e The cumulative distribution function of Rayleigh is,
2
F(t)zl—e (Uj :

i
e The c.d.fis equated to p,. Where, p, = ——.
n+1

o lheequation F'(¢) = p, is expressed as a linear form,

X = C‘Xi +D . Where,

Y = log(—log(l—pi));

A_ZXin.—nYX Ao— A—

_ZXf—nX . D=Y-CX:
_,SA

o=e’°¢

1
o Where, . A_ > is nothing but the parameter ‘b’

estimated through regression approach.
Table 1: Parameters estimated through MLE and

Regression
Parameters
Data Set

31 3 Ofe MLE Regression

observations) 2 8
Xie (30) 30.025159 0.008178
NTDS (26) 28.83193 0.031848
AT&T (22) 23.71965 0.003074
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6
SONATA 31.96149 | 0.000345
(30) 7
IBM (15) 19.166435 0.003402
LYU 24y 24.028639 0.127698

4.3 Distribution of Time between failures

Based on the inter failure data given in Table 2 and 3, we
compute the software failures process through Mean Value
Control chart. We used cumulative time between failures
data for software reliability monitoring using Rayleigh
distribution. The use of cumulative quality is a different and
new approach, which is of particular advantage in
reliability.

“a’and ‘b’ are Maximum Likely hood Estimates of
parameters and the values can be computed using iterative
method for the given cumulative time between failures data.
Using ‘a’ and ‘b’ values we can compute m(t) .

Table 2. Time between failures of a software, NTDS

Failure Time Failure Time
Number between Number between
failure(h) failure(h)
1 9 14 9
2 12 15 4
3 11 16 1
4 4 17 3
5 7 18 3
6 2 19 6
7 5 20 1
8 8 21 11
9 5 22 33
10 7 23 7
11 1 24 91
12 6 25 2
13 1 26 1

Table 3. Time between failures of a software, LYU

Failure Time Failure Time
Number between Number between
failure(h) failure(h)
1 0.5 13 0.9
2 1.2 14 1.7
3 2.8 15 1.4
4 2.7 16 2.7
5 2.8 17 3.2
6 3.0 18 2.5
7 1.8 19 2.0
8 0.9 20 4.5
9 1.4 21 3.5
10 3.5 22 5.2
11 34 23 7.2
12 1.2 24 10.7
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Assuming an acceptable probability of false alarm of 0.27%,
the control limits can be obtained as (Xie, 2002):

T, =1-¢ ) =0.99865
T.=1-¢" =05

indicates an alarming signal. A point above the control limit
m(t,, ) indicates better quality. If the points are falling within

the control limits, it indicates the software process is in stable
condition. The values of control limits are as follows.
Table 4.Control Limits

T, =1-¢® =0.00135 Dataset | m(,) m(t.) m(t,)
These limits are converted to m(t, ), m(¢.)and m(t;) NTDS | 28.812980 | 14.425965 | 0.038950
o Lyu 24.053875 12.043196 0.032517
form. They are used to find whether the software process is in
control or not by placing the points in Mean value chart shown
in figure 1 and 2 . A point below the control limit m(Z; )
Table 5. Successive differences of mean values, NTDS
Cum'ulative m(t) S}lccessive Cum‘ulative m(t) syccessive
time differences time differences
9 2.275653 8.129812 87 28.838564 0.006874
21 10.405465 8.234718 91 28.845438 0.001100
32 18.640183 2.462075 92 28.846538 0.002340
36 21.102259 3.326994 95 28.848878 0.001356
43 24.429253 0.723060 98 28.850233 0.001200
45 25.152313 1.414450 104 28.851434 0.000095
50 26.566763 1.333854 105 28.851529 0.000367
58 27.900617 0.436299 116 28.851896 0.000034
63 28.336916 0.314700 149 28.851930 0.000000
70 28.651616 0.026694 156 28.851930 0.000000
71 28.678310 0.103081 247 28.851930 0.000000
77 28.781390 0.010262 249 28.851930 0.000000
78 28.791652 0.046911 250 28.851930
Table 6. Successive differences of mean values, Lyu
Cumulative successive Cumulative successive
time m(t) differences time m(t) differences
0.5 0.097994 1.010797 26.1 24.086031 0.000280
1.7 1.108791 5.665069 27.8 24.086311 0.000059
4.5 6.773860 6.969707 29.2 24.086370 0.000021
7.2 13.743567 5.626883 319 24.086391 0.000001
10.0 19.370450 3.185178 35.1 24.086392 0.000000
13.0 22.555628 0.853866 37.6 24.086392 0.000000
14.8 23.409494 0.244263 39.6 24.086392 0.000000
15.7 23.653757 0.228031 44.1 24.086392 0.000000
17.1 23.881788 0.180812 47.6 24.086392 0.000000
20.6 24.062599 0.021786 52.8 24.086392 0.000000
24.0 24.084385 0.001241 60.0 24.086392 0.000000
25.2 24.085626 0.000405 70.7 24.086392

Figure 1 and 2 are obtained by placing the time between failures cumulative data shown in table 5 and 6 on y axis and failure
number on x axis and the values of control limits are placed on Mean Value chart. The Mean Value chart shows that the ,10th

failure data has fallen below m1(f, ) and almost continues to fall below it for both data sets. It indicates the failure process. It is
significantly early detection of failures using Mean Value Chart. The software quality is determined by detecting failures at an

carly stage. No failure data fall outside the m(f;,) . It does not indicate any alarm signal
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Mean Value Chart
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Figure: 1 Mean Value Chart — NTDS
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Figure: 2Mean Value Chart — Lyu

CONCLUSION

The given inter failure times are plotted through the
estimated mean value function against the failure serial order.
The parameter estimation is carried out by Two step approach
for Rayleigh model. The graphs have shown out of control
signals i.e below the LCL. Hence we conclude that our
method of estimation and the control chart are giving a +ve
recommendation for their use in finding out preferable control
process or desirable out of control signal. By observing the
Mean value Control chart we identified that the failure
situation is detected at 10th point of Figure 1 and 2 for the

corresponding m(?) , which is below m(%,) . It indicates

that the failure process is detected at an early stage. Hence our
proposed Mean Value Chart detects out of control situation at
an earlier. The early detection of software failure will improve
the software Reliability. When the time between failures is
less than LCL, it is likely that there are assignable causes
leading to significant process deterioration and it should be
investigated. On the other hand, when the time between
failures has exceeded the UCL, there are probably reasons
that have lead to significant improvement.
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