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Comparison of ARMA and ARMAX stochastic
models for Karoon river time series generation and
forecasting
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Abstract— Time series modeling and forecasting has
fundamental importance to various practical domains. The main
aim of time series modeling is to carefully collect and rigorously
study the past observations of a time series to develop an
appropriate model which describes the inherent structure of the
series. This model is then used to generate future values for the
series, i.e. to make forecasts. Time series forecasting thus can be
termed as the act of predicting the future by understanding the
past [S, 6]. Due to the fact that just using the historical datasets,
suppress the chance of considering different scenarios in water
resource studies, hydrological parameters forecasting such as
precipitation and discharge plays a big role in hydrologic studies
as considering different scenarios will increase the liability of
the final forecasting.

Plenty of mathematical methods has been introduced for
forecasting, however stochastic models are one of the most
common. In this research, data generation and forecasting of
ARMA and ARMAX stochastic techniques by using a numerical
model on Karoon River (Iran) historical discharge time series
has been compared. The final results represents how combined
model of ARMA and an external variable X will grow fitness of
the model in ARMAX stochastic modeling.

Index Terms— ARMA, ARMAX, Stochastic modeling, Time
Series
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I. INTRODUCTION

A time series is a sequential set of data points, measured
typically over successive times. It is mathematically defined
as a set of vectors x(t),t = 0,1,2,... where t represents the time
elapsed [3,4,6].

In general models for time series data can have many forms
and represent different stochastic processes. There are two
widely used linear time series models in literature.
Autoregressive (AR) [1, 2, 4] and Moving Average (MA)
[1,4] models. Combining these two, the Autoregressive
Moving Average (ARMA) [1, 2, 3, 4] and Autoregressive
Moving Average Models with Exogenous Variables
(ARMAX), Generalized.

In an AR (p) model the future value of a variable is assumed to
be a linear combination of p past observations and a random
error together with a constant term [2,4] while the MA(q)
model uses past errors as the explanatory variables [2,3,4].
Fitting an MA model to a time series is more complicated than
fitting an AR model because in the former one the random
error terms are not fore-seeable.

Autoregressive (AR) and moving average (MA) models can
be effectively combined together to form a general and useful
class of time series models, known as the ARMA models.
Mathematically an ARMA (p, q) model is represented as
[2,3,4]:

P q
Ye =cté +Z PiVes +Z e, _;
i=1 i=1 (1)

Here Yt and €t are respectively the actual value and random
error  (or random shock) at time period @t
(P(l = 1;2;---Jp:]:e U: 1J2J"'Jq) are model
parameters, c is the constant and p,q refer to p autoregressive
and q moving average model orders [2,3,4].

While in ARMAX model there is another term representing
Xt time series which has a good correlation with the yt time
series.
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II. MATERIALS AND METHODS

Historical time series in this research is 47 years recorded
discharge of Karoon River at Armand station (Figl-a) which
has been standardized via using Logarithmic transformation
in a program called SAMS (Fig 1-b).
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Fig 1- a) monthly historical discharge (x) of Karoon river at
Armand station (cms) b) standard monthly historical
discharge (z) of Karoon river at Armand station

The primary investigation on the historical data based on
autocorrelation and partial auto correlation respectively in Fig
2, Fig 3 represents that after 2 lags in partial autocorrelation
chart @k is finite in extent while it’s infinite in extent before
15 lag in autocorrelation chart. For that reason, AR (2) model
(with @1 and ®2 equals to 0.684 and 0.116) is the primary
selected model for data generation.
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Fig2- Autocorrelation coefficient
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Partial Autocorralation function
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Fig 3- Partial autocorrelation coefficient

A. Data Generation

Unlimited discharge time series has been generated with using
GARCHSIM instruction in GARCH toolbox of MATLAB
programming as follows:

[e, s, y]=garchsim (coeff, NumSamples,
Prelnnovations, PreSigmas, PreSeries)

The final generated series consist of three terms which
respectively represent: fitting error (¢), the standard deviation
of the fitted model (s) and generated data (y).

Here in the garchsim instruction coeff represents the fitted
model coefficients (@ and ®,), NumSample is the number of
historical data, NumPaths is the number of generated series,
Prelnnovation is the amount of €, PreSigmas is the amount of
o and PreSeries is the standardized historical time series. Also
the success of the fitted model has been investigated by the

NumPaths,

Porte Manteau Lack test on the £ time series with using
Ibqtest instruction in MATLAB

B. Data Forecasting

Data estimation for future (Lead time) is called forecasting.
The target is estimating Zt 4, data for L = 1. This has been
fulfilled with using garchpred instruction in MATLAB
environment as follows:

[SigmaForecast,MeanForecast] = garchpred
(Spec,Series,NumPeriods)

Which Numperiods is the number of L and in this research
was considered equal to 20.

III. RESULTS

A. Data Generation

The number of generated series (NumPaths) is unlimited and
one of the outlets has been depicted in the form of three charts
is represented in Fig 4.
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Fig 4- One sample result of the generated data from historical time
series based on AR (2) model a)Generated time series b) standard
deviation of the fitted model c) fitting errors

B. Data Forecasting

Forecasted data for the time lags of 1 to 20 is illustrated in
Fig5.

In this research the liability of the fitted model has been
investigated by forecasting each data of the historical time
series based on the data one step behind then both predicted
and historical time series has been depicted in one chart which
shows a very strong fitness (Fig6).
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Fig 5- Forecasted data for lag times of 1 to 20
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Fig 6- Historical and forecasted time series
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IV. DISCUSSION

The best fitted model selection is a complicated process
needing a numerical model which has been written in
MATLAB environment enclosed to this article. For better
selection each model has been compared based on following
parameters (Table 1).

RMSEX = Root Mean Square x data

RMSEZ = Root Mean Square z data- standardized
AIC = Akaike Information Criterion

LLF = Likelihood function

Based on this comparison the best fitted models are GARCH
(1,0,0,1), GARCH (1,0,1,1), GARCH (2,0,0,1) and GARCH
(2,1,0,1).

As Discussed before, there are some newly developed
stochastic models called ARMAX (Autoregressive Moving
Average Models with Exogenous Variables) which uses other
related parameters time series and historical time series
correlation for better fitness and forecasting of the model.

In this research, different X time series (Precipitation,
Temperature, Downstream station recorded discharge and
Large-scale climate signal El-Nino with using southern
Oscillation Index (SOI)) has been considered. In the
numerical model (enclosed to this article), first there is a
correlation process between these parameters and historical
discharge of Karoon River and then all the process of data
generation and forecasting has been followed.

Based on correlation factors, precipitation and SOI time
series are the two most fitted parameters to the Karoon River
discharge. The fitness investigation of the ARMAX model for
the same ARMA model order results has been reviled in table
2 and table 3 respectively with using precipitation data and
SOI data.

V. CONCLUSION

It is a common belief that in every aspect of life, having better
knowledge of past, will raise the likelihood of forecasting the
future. In this research it also has been proved even in
hydrologic data forecasting. That is, using other related
climatic parameters such as precipitation (32 years recorded
data) and large scale climatic signal (SOI), has slightly
improved the fitness of the forecasted Karoon river discharge.
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Tablel- Summarized results of the stochastic ARMA model fitting

process
[ Parameters | [ [ [ Result
. pRakS H M P Q X purss | RMESx LLF Qitest AIC Sellected
1 AR{1) 1 0| 0] 0] 0| 0224 155918 3630004 ok 3572855 O
2 1 D[ 0] 1| 0] 0180 13.0330 350.1360 ok 366,592 7
3 1 0 [ 1 [ 1| 0| 02002 141585 348.8530 ok 365674 v
4 1 0020 02318 5.5000 247.6607 ok 3633785 ]
5 1 0 [ 2[1]0 0.2108 41897 348.8530 ok 33,6059 O
5 1 D[ 1] 20 0.2318 5.4998 347.6897 ok 361.3917 O
7 1 0 [ 2 2| 0 0238 155000 78897 ok 3503853 0
8 AR(2) 7] 0 | 0] 0| 0| 02427 17.0166 ~360.3667 ok 3589712 O
3 2 0 [ 0] 1] 0] 02151 15.2803 348.1509 ok 370.1535 7
0 3 0 [ 1 [ 1| 0 [ 02247 155410 371745 ok 3662902 ai
11 ] 0| 0 2| 0] 023% 165316 46,4453 ok 56152 O
12 2 0 [ 2 1] 0| 02247 15.8410 347.1745 ok 366.2919 O
13 2 0| 1] 2] 0] 0235 16.5327 346,483 ok 363.6169 O
14 2 0 | 2] 2] 0] 02375 16.5326 34B.4483 ok 361.6072 O
5 AR(3) 3 00|00 02519 7.0160 360.6123 ok 360.5203 O
5 3 0] 0] 1|0 0.2772 53662 347.8360 ok 369.0207 i
7 3 0] 1] 1|0 0.2360 5 5004 346.8729 ok 367.0973 ]
B 3 00|20 0.2471 55130 346.1676 ok 364.5436 0
19 3 D[ 2 [ 1| 0] 0230 15 5963 34B.8729 ok 365.0871 0
0 3 0 [ 1 [ 2| 0 02471 16,5151 46,1876 ok 3625071 0
21 3 0| 2] 2| 0| 024n1 16,5150 346.1876 ok 3605022 i}
2 ARMA{T 1) 1 1] 0| 0] 0| 02318 16.5832 360.8183 ok 360.1077 0
73 1 T 10 1 [ 0] 049% 14,5091 348.4038 ok 360.4530 0
21 1 T 1 1[0 02013 155871 3AT3T0 ok 367.7444 O
25 1 1] 0| 2| 0| 02382 16.4110 34B.5859 ok 365.0586 O
%6 2] 1[0 0.2215 55073 47,3720 ok 65,7203 O
27 120 0.2362 54106 246.5659 ok 3630533 O
o] 3 2 [0 0.2362 54108 TH6.5659 ok 610522 ai
28 ARMA(Z,1) 7] 1] 0] 0] 0] 02485 17.2124 355.7235 ok 360.3010 ]
30 2 1l 0] 1] 0] 02183 154562 347.4398 ok 369.3161 v
31 2 T 1 1[0 02271 150305 H6.1602 ok 3682054 0
3 ] 10| 2| 0| 02183 154562 T35 ok 60,3161 0
] z 12 | 1[0 022 150663 346470 ok 66,1128 O
34 2 1] 1] 2] 0] 02377 16.5328 -345.5009 ok 363.8259 O
35 2 1] 2| 2] 0] 02377 16.5314 -345.5009 ok 361.8241 O
36 ARMA(1 2) 1 2 [ 0] 0] 0] 02417 16.5444 360.6154 ok 358.5150 O
a7 1 2 [0 ] 1] 0] 02142 15.0585 348.1077 ok 36B.4111 O
38 1 2 [ 1] 1] 0] 0236 15 6530 347.10a7 ok 36B.5517 0
EE] 1 3 [ 0] 2| 0] 02378 16.3814 3463618 ok 363.8209 0
a0 1 22 [ 1 0] 0248 15 5506 347.1037 ok 364.5369 O
A1 1 3 [ 1 [ 2 | 0 02378 16,3805 3463618 ok 361,843 O
42 1 2 2] 2| 0] 02378 16.3756 346.3618 ok 350.8483 ]
Table2- Summarized results of the stochastic ARMAX model
fitting process with the precipitation as the X time series
| Parameters | [ Result [
Mt o i M| P Q@ X! REMESz | RMESx LLF Q-test aic
1 1 0 0 0 1 0.2162 14.3474 -304 6449 ok -472 4551
2 ARMAX(1,0,1) 1 0 1 1 1 0.1886 12.8104 -289.7069 not -476.6843
2 1 0 0 1 1 0.1852 12.6075 -289.8213 not -479.8321
4 2 0 0 0 1 02360 157729 -301 4020 ok -476 9401
ARMAX(2.01
5 0.1 2 0 0 1 1 0.1999 13.0761 -289.6562 ok -480.0796
[§] ARMAX(3.0.1) 3 0 0 0] 1 02451 157785 -301 2001 ok -475 3447
7 ARMAX(1.1,1) 1 il 0 0 1 0.2859 20.4664 -294 6113 ok -490.5224
8 ARMAX(1,2,1) 1 20 0 .9 0.2975 20.9233 204 5313 ok 488 6823
9 2 1 0 0 1 0.3068 21.8804 -293.0400 ok -491.6704
ARMAX(2 11
10 214 2 1 0 1 1 0.2738 19.4562 -283.1388 ok -495 9657
Table3- Summarized results of the stochastic ARMAX model
fitting process with the SOI as the X time series
| Parameters | [ Result
R M| P|[a]|X
Hum, Rty RMESz | RMESx LLF Q-test aic
1 1 0]o0|0] 1| 02364 164916 | -361.2118 ok 3593209
2 ARMAX(1,0,1) 1 g | % |2 02257 155808 | -346.3332 ok -367.4722
2 1 o ol a4 02029 142349 | -347.7870 ok -369 5663
4 2 N 0.2560 17.9103 | -358.4972 ok -362.7500
ARMAX(2,0,1
5 0.0 2 0 0 1 1 0.2317 16.2637 -345.9357 ok -372.7652
5] ARMAX(3,0,1) 3 0 0 0 1 0.2649 17.9110 -358.2462 ok -361.2512
7 ARMAX(1,1,1) 1 i) 0 0 1 0.2463 17.6307 -358.6762 ok -362.3919
3 ARMAX(1.2.1) 1 9 |ag[ola 0.2556 17 6961 358 4258 ok -360 8936
9 . 2 1 0 0 1 0.2562 18.0854 -358.3725 ok -360.9999
T i o 2 1o 1] 02314 16.4434 | -3455949 ok -371.0545
62 www.ijerm.com
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Fitted ARMAX numerical model compression based on
RMSEx, RMSEz, AIC, LLF

clc

clear all

S###### input data file #######H#FAEFARIFAAAAAAAARERARES
iR=input ('Please input parameter R:');

iM=input ('Input Parameter M:');

ip=input ('Input parameter p :');

ig=input ('Input parameter q :');

Number
The
Number

Leadtime

ix=input ('Input
ij=input ('Input
Nsim=input ('Input
LeadN=input ('Input

of parameter(X) (1-13):");

Lag Number of parameter(X) (0-12):');
of data generating:');

Number to forecast:');

imfd=xlsread('Strem Flow Normal Data.xls'
=skewness (imfd) ;
transform to column format==============

cif=imfd';
cimfd=[cif(:,1);cif(:,2);cif(:,3);cif(:,4);cif(:,5),;cif(:,
6);cif(:,7);cif(:,8);cif(:,9) ;...

cif(:,10) ;jcif(:,11) ;cif(:,12);cif(:,13),;cif(:,14);cif(:,15
);cif(:,16) ;cif(:,17) ;...

cif(:,18) ;cif(:,19) ;cif(:,20);cif(:,21) ;cif(:,22);cif(:,23
);cif(:,24) ;cif(:,25) ;...

cif(:,26) ;cif(:,27);cif(:,28),;cif(:,29),;cif(:,30),;cif(:,31
)icif(:,32)];

nmfd=(imfd) ; $normalized monthly flow

data
=skewness (nmfd) ;
=standardlized monthly flow data===

ean (nmfd) ;
sdf=std (nmfd) ;
smfd=[ (nmfd(:,1) -
mef (2))./sdf(2) (nmfd(:,3)-
(nmfd(:,4)- mef(4))./sdf(4)
(nmfd(:,6)- mef(6))./sdf(6)...
(nmfd (:,7)~- mef(7))./sdf(7)
(nmfd(:,9)- mef(9))./sdf(9)...
(nmfd(:,10) - mef (10))./sdf (10) (nmfd(:,11)-
mef(11))./sdf(11) (nmfd(:,12)- mef(12))./sdf(12)];

$ column format============

mef (1)) ./sdf (1)
mef (3))./sdf(3)...
(nmfd (:,5)- mef(5))./sdf(5)

(nmfd (:,2) -

(nmfd(:,8)—- mef(8))./sdf(8)

g===== transform to
cmf=smfd';
csmfd=[cmf (:,1);cmf (:,2);cmf (:,3) ;cmf (:,4) ;cmf(:,5) ;emf(:,
6);cmf(:,7);cmf (:,8) ;emf(:,9) ;...

cmf (:,10) jemf (:,11) ;emf(:,12) ;emf(:,13) ;emf(:,14) ;emf(:,15
)semf(:,16) ;emfE(:,17) ;7...

cmf (:,18) ;yemf(:,19) ;emf(:,20) ;emf (:,21) ;emf (:,22) ;emE(:,23
)semf(:,24) ;emf(:,25) ;...

cmf (:,26) ;emf (:,27) ;emf (:,28) ;emf (:,29) ;emf (:,30) ;emf (:,31
)semf(:,32)];

impd=xlsread('Precipitation Data.xls');% 1initial onmthly
precipitation data of armand station
skimpd=skewness (impd) ;
§====transform to column
cip=impd';
cimpd=[cip(:,1) ;cip(:,2);cip(:,3) ;cip(:,4) ;cip(:,5) ;cip(:,
6) ;cip(:,7) ;cip(:,8) ;cip(:,9) ;...

cip(:,10) ;cip(:,11) ;cip(:,12) ;cip(:,13) ;cip(:,14) ;cip(:,15
)scip(:,16) ;cip(:,17) ;...

cip(:,18) ;cip(:,19) ;cip(:,20) ;cip(:,21) ;cip(:,22) ;cip(:,23
)scip(:,24) ;cip(:,25) ;...

cip(:,26) ;cip(:,27) ;cip(:,28) ;cip(:,29) ;cip(:,30) ;cip(:,31
);cip(:,32)];

3 standardlized
ean (impd) ;
sdp=std (impd) ;
smpd=[ (impd(:,1) -
mep (2))./sdp(2) (impd(:,3)-
(impd(:,4)- mep(4))./sdp(4)
(impd(:,6)- mep(6))./sdp(6)...
(impd (:,7)- mep(7))./sdp(7)
(impd(:,9)- mep(9))./sdp(9)...
(impd(:,10) - mep (10)) ./sdp (10) (impd (:,11)-
(impd(:,12)- mep(12))./sdp(12)];
$================transform to

format
cmp=smpd ' ;

csmpd=[cmp (:,1) ;ecmp(:,2) ;ecmp (:,3) ;emp (:,4) ;emp (:,5) ;emp (=2,
6);,cmp(:,7);cmp(:,8);cmp(:,9) ;...

cmp(:,10) ;emp (:,11) ;emp(:,12) ;emp (:,13) ;cmp (:,14) ;emp (:,15
)semp(:,16) ;emp (:,17) ;...

cmp(:,18) ;emp (:,19) ;emp (:,20) ;emp (:,21) ;emp (:,22) ;emp (2,23
)semp(:,24) ;emp (:,25) ;...

cmp (:,26) ;emp (:,27) ;emp (:,28) ;emp (:,29) ;emp (:,30) ;emp (2,31
) semp(:,32)];

format

monthly flow data

mep (1)) ./sdp (1)
mep (3))./sdp(3) ...
(impd(:,5)- mep(5))./sdp(5)

(impd (:,2) =
mep (8) ) ./sdp(8)

(impd(:,8) -

column

ACFcsmfd=autocorr (csmfd,length (csmfd) /4,2) ;

$ title('Autocorrolation function')

PACFcsmfd=parcorr (csmfd,length (csmfd)/8,2) ;
S### select kind of moded & set the model ##

spec =

garchset('R',iR,'M',iM, 'Regress',[1:ix],"'p',ip,"'q',1q)

SHAHHHAAAAAAARHAFRHRAAAAAAAFFRRHAAAAA AR FFRFRRRRAAAAAAAAAS

64

BBl1=[csmpd (length (csmpd)) ;csmpd (1:length (csmpd)-1)];
BB2=[BBI1 (length (csmpd)) ;BB1 (1:1length (csmpd)-1)];
BB3=[BB2 (length (csmpd)) ;BB2 (1:length (csmpd)-1)];
BB4=[BB3 (length (csmpd)) ;BB3(1:length (csmpd)-1)];
BB5=[BB4 (length (csmpd)) ;BB4 (1:1length (csmpd)-1)];
BB6=[BB5 (length (csmpd)) ;BB5 (1:1ength (csmpd)-1)];
BB7=[BB6 (length (csmpd)) ;BB6 (1:1length (csmpd)-1)];
BB8=[BB7 (length (csmpd)) ;BB7(1:1length (csmpd)-1)];
BB9=[BB8 (length (csmpd)) ;BB8 (1:1length (csmpd)-1)];
BB10=[BB9 (length (csmpd) ) ;BB9 (1:1length (csmpd)-1)];
BB11=[BB10 (length (csmpd)) ;BB10(1:1ength (csmpd)-1)];
BB12=[BB11 (length (csmpd)) ;BB11 (1:1length (csmpd)-1)];
precipsc=[csmpd BBl BB2 BB3 BB4 BB5 BB6 BB7 BB8 BB9 BB10 BBI1l
BB12];
SH#######AA###E Parameter Estimation ########F#AAA#HHAAAAIE
[coeff11000,error11000,LLF11000,innovationsl11000,sigmasl10
00, summaryl11000]
=garchfit (spec,csmfd,precipsc (:,ij+1:1j+ix));
[coeffl11000,error11000,LLF11000,innovations11000,sigmas110
00, summaryl11000]
=garchfit (spec,csmfd,precipsc(:,ij+1:1j+ix),innovationsl110
00,sigmas11000,csmfd) ;
$ Examine the Estimated
garchdisp (coeff11000,errorl11000) ;
S###########4  Simulation  ########HFAFHAAAEAAAES
[e11000,s11000,y11000] =
garchsim(coeff11000,384,Nsim,[] ,precipsc(:,1j+1:1j+ix),[],
innovations11000,sigmas11000,csmfd) ;
S######### Forecasting ###########A##FR##A#AH
[SigmaForecastAl1000,MeanForecastAl1000] =
garchpred (coeff11000,csmfd,LeadN,precipsc(:,1ij+1:1j+1ix)) ;
nn=[iR iM ip iq 1ix];
for j=max(nn):length (csmfd)
[SigmaForecastB11000(j) ,MeanForecastB11000 (j)]=garchpred(c
0eff11000,csmfd(1:5),1,precipsc(:,ij+l:1ij+ix
));
hold on
end

[H11000,pValuell000,Statl11000,CriticalValuell000]
=lbgtest (innovations11000,[10 30 50]',0.05);
[HI1000 pValuell000 Statll000 CriticalValuell000]
SHAARAAFHAAAAHHAHAAAAFHRAARAAHRAAAFFFRAAAAHHRAAAARAHRAAAAA
d=length (csmfd)-length (MeanForecastB11000) ;
Error=csmfd (l1+d:end) -MeanForecastB11000"',;
SSE=sum (Error."2) ;
LMSE=SSE/length (Error) ;
RMSEz=LMSE"0.5

a=MeanForecastB11000';

b=[a(1:12) a(13:24) a(25:36) a(37:48) a(49:60) a(61:72)
a(73:84) a(85:96)...

a(97:108) a(l109:120) a(121:132) a(133:144) a(l45:156)
a(l57:168) a(169:180) ...

a(l181:192) a(193:204) a(205:216) a(217:228) a(229:240)
a(241:252) a(253:264) ...

a(265:276) a(277:288) a(289:300) a(301:312) a(313:324)
a(325:336) a(337:348) ...

a(349:360) a(361:372) a(373:384)];

c=b';

t=[(c(:,1)*sdf(1))+mef (1)
(c(:,3)*sdf (3))+mef (3) ...
(c(:,4) *sdf (4)) +mef (4)
(c(:,6)*sdf (6))+mef (6) ...
(c(:,7)*sdf (7)) +mef (7)
(c(:,9)*sdf (9))+mef (9) ...
(c(:,10)*sdf (10))+mef (10)
(c(:,12)*sdf (12))+mef (12)];
tt=10."t;
ttt=sum((imfd-tt)."2);
tttt=sum(ttt) ;
ttttt=tttt/length (MeanForecastB11000) ;

RMSEx=ttttt".5
SHAHHHAAAAAAAAHAAFHREAAAAAARAHAARRAAAAA AR A A A AR AR AR
citt=tt';

ctt=[citt(:,1) ;citt(:,2);citt(:,3),;citt(:,4),;citt(:,5),;cit
t(:,6),;citt(:,7),;citt(:,8),;citt(:,9) ;...

citt(:,10) jcitt(:,11) jcitt(:,12) ;citt(:,13) ;citt(:,14) ;cit
t(:,15) ;citt(:,16) ;citt(:,17) ;...

citt(:,18) ;citt(:,19) ;citt(:,20) ;citt(:,21) ;citt(:,22),;cit
t(:,23);citt(:,24) ;citt(:,25) ;...

citt(:,26) ;citt(:,27) ;citt(:,28) ;citt(:,29) ;citt(:,30),;cit
t(:,31);citt(:,32)];

(c(:,2)*sdf (2))+mef (2)
(c(:,5)*sdf (5))+mef (5)
(c(:,8)*sdf (8))+mef (8)

(c(:,11)*sdf(11))+mef(11)

grid on

plot(ctt, 'DisplayName', 'MeanForecast',
'YDataSource', '"MeanForecast') ;

hold all;

plot (cimfd, 'DisplayName', 'csmfd','YDataSource', 'csmfd');
hold off; figure (gcf)

SHAHHHHAAAAAARHFFAHRAAAAAAAFFHFHRAAAAAAFFFFRRRAAAAA S
[AICI11000,BIC11000] = aicbic (LLF11000,
garchcount (coeff11000) ,384) ;

LLF11000

AIC11000

BIC11000

aicll1000=384*1log (mean (sigmasl1000) "2)+2*garchcount (coeffll
000)
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