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Numerical Solution of the Poisson Equation in
Nonrectangular Domains
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Abstract— In this study, finite difference numerical
solution of the Poisson equation in nonrectangular
domains is introduced and a 2D case study in
nonrectangular domain is presented. The problem is
solved both manually and numerically with Matlab. Both
results are compared. The temperature distribution
solution of Poisson equation is presented in 3-D and
contour plots
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I. INTRODUCTION

The Laplacian equation in Cartesian coordinates is given as

Viu=f(x,y,2) (1)

There are two types of Laplacian equations: Homogeneous
and Non-homogeneous.

The Homogeneous Laplace equation is given as

Viu=0 2)

One of the applications of Laplace equation is in heat transfer:
Temperature distribution in a plane with constant thermal
conductivity, no heat generation, and steady state case. For
this case Laplace equation is given as

VT =0 3)

which can be written for the three dimensional temperature
distribution as
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and for the two dimensional temperature distribution for the
Cartesian coordinate system.

Viu=f )
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where f is a source function.

For the two dimensional case,
2

Viu=u,+u,=[f(xy) (6)

f is the heat generation term in heat transfer. For this case,
the equation can be written as (Cengel and Ghajar, 2011)

o’T o’T 0T e
+ + +
ox* oy’ oz’

where e is the rate of heat generated in the unit volume, and k
. L.oe .
is the thermal conductivity. — is the source term, f in

non-homogeneous Laplace equation. For the steady state two
dimensional case with heat generation and constant thermal
conductivity, this governing equation for the temperature
distribution can also be expressed as
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If Ax=Ay=h, finite-difference approximation to the

Poisson equation

2
Uj—l,k + Uj,/c—l + Uj+1,/< + Uj,k+1 - 4Uj,k =h f_/,k

9
We can not apply the finite difference scheme (9) at grid
points such as P because the points N and E do not fall on the
boundary curve C, as illustrated in Figure 1. (Greenberg,
1988; Kreyszig, 1998)
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Figure 1. Nonrectangular domain

— e~

- i —>

www.ijerm.com



Numerical Solution of the Poisson Equation in Nonrectangular Domains

We slide N and E so that they do fall on C, as shown Fig. 2.
(Greenberg, 1988; Kreyszig, 1998)

Figure 2. Sliding of N and E
The general case is shown in Fig. 3, where

0<a<l, 0<p<l, 0<y<l, 0<d<I.

Figure 3. General case

Taylor expansions about P (the point X;, yy) in the eastern and
western directions, respectively are as follows (Greenberg,
1988; Kreyszig, 1998)

u(xj +ah,y,) :u(xjayk)+ux(xj’yk)ah

1 (10)
+?!um(xj’yk Yah)® + ...,
u(x; —=yh,y,) =u(x;,y,)+u (x;,y,)(=yh)

1 , (11)
+5!uxx(xj,yk)(—6h) +...
or using N, E, S,W, P subscript notation instead,
Up =Up+u, Pah+%uxx‘pa2h2+..., (12)

1

u, =uP—ux|Pyh+Eum|Py2h2—... (13)

Multiplying (12) by y and (13) by a and adding, to cancel the
U terms, gives

1
yu, +auy, = +a)u, +5(a2y+ay2)h2um|l,

+..
(14)

If we neglect terms of order h* and higher in (14) then we
obtain
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- 2
ay(a+y)h*
(15)

[WE +auy —(y +0‘)”P]

P
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Taylor expansions about P in the northern and southern
directions give the result

2

“ole > s i
(16)

[&'lN + Pug — (6 +ﬂ)“P]

Using (15, 16), finite-difference approximation to the Poisson
equation u,, +u, = f (x, y), at P, becomes
(Greenberg, 1988; Kreyszig, 1998)

2 U, + 2 U, + 2 Ug
y(y+a) 5(6+pP) aa+y)
2 ay + o (a7
+—= U, 2Py —py,
B(B+6) apysé
If o = =y =05 =1, then (17) reduces to
Uj—l,k + Uj,k—l + Uj+1,k + Uj,k+1 - 4Uj,k (18)

2
=h f Jik
II. ACASESTUDY
Let us consider the problem illustrated in Figure 4.

uxx +uyy =f(x9y)
with 4, =u, =uy; =u, =0 and u; =50 and
S (x,y)=-20

Figure 4. Case study

so we have

Ata,

oh=2, 0=2/2=1
ph=2, p=2/2=1
vh=2, y=2/2=1

Sh=4-14% — 2% =0.54, 5=0.54/2=0.27

Atb,
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ah=2, a=2/2=1
Bh=2, p=2/2=1
yh=2, y=2/2=1
h=2, 5=2/2=1

Atc,

oh=2, a=2/2=1
Bh=2, p=2/2=1
vh=2, y=2/2=1
dh=2, 6=2/2=1

Ate,
oh=2, 0=2/2=1
Bh=2, p=2/2=1

yh=4-/4% — 2% =0.54, y=0.54/2=0.27

oh=2, 6=2/2=1
Thus, writing (17) at these points gives the equations
For a,

We use the average value for western direction,

_0+50
2

U, 25

225 2 50 2U 2

+ + Y
10+1) 0.27(0.27 +1) 11+1)
_9 1x1+1x0.27 U, =80

1x1x1x0.27

For b,

2 Uu, + 2 U, + 2 U, + 2
11+1) 1A+1 1A+ 1A+
_21x1+1x1
Ix1xlxl

U, =-80

Forc,
2 U, + 2 U, + 2 0 + 2 0
11+1) 10+1) 1(1+1) 11+ 0.27)

1x1+ 1x1 U, =80
1x1x1x1

For d,

+
11+ 0.27)
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2 2 2 2

U, + 0 + 0 + U,
11+1) 1+1) 10+1) 10+1)
_21x1+1x1U _ g0

1x1x1x1
Fore,

Similarly, for southern direction

_0+50

U, > 25
2 50 + 2 25 +# J

0.27(0.27 +1) 1(1+1) 1(1+0.27)

N 2 - 1xl +1x1 U, =—80

1(1+1) 1x1x0.27x1

Then we obtain

[(—940 1 0 0 [u,] [-396]
1 -4 1 0 1 U, - 80
0 -4 0 |U,|=|-80
0 0 1 -4 1 |U, -80

|0 1 0 157 -940|U,| [-396)

(U, | [48.2383]

U, 57.4404

U, |=|45.7053

U, 45.3808

U, | [558179]

III. THE SOLUTION WITH MATLAB

The problem has been solved with Matlab using a
convergence criterion of l1e-7. The differential equation is the
governing equation for 2-D steady state temperature
distribution in a plate with constant thermal conductivity. The
temperature distribution has been solved for the distance
between grid points (h) of 2 and 0.05. Then, we obtain

0 0 0 0 0
25.0000 48.2654 57.4509 45.7089 0
NaN NaN  55.8295 453846 0
NaN NaN  25.0000 0 0

It is seen that the results are very close to the manual
calculations of Figure 5, which is presented above.

The temperature distribution has also been solved for the h of
0.05. The numerical mesh and the temperature distribution is
seen in Figure 5. The quarter circle side has a temperature of
50, while all the other sides are taken to be zero. The average
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temperature of 25 has been taken as the temperatures of the
corners that are the intersection of the sides and the curved
line.

The temperature distribution of the plane is presented in
figures 5 and 6. It is seen that the temperature at the center is
much more than the maximum boundary condition
temperature, 50°C because of the heat generation inside the

geometry. The temperature contours on the plate are
illustrated in Fig. 7.
Termperature Distribution on the Plate
B
X
Figure 5. The numerical mesh and the temperature
distribution.
Temperature Distribution on the Plate
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Figure 6. The temperature distribution of the plane.
Contour Temperature Distribution on the Plate
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Figure 7. The temperature contours on the plate.
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IV. RESULT

In this study, numerical solution of the Poisson equation in
nonrectangular domains is introduced and a 2D case study in
nonrectangular domain is presented. The problem is solved
manually and numerically with Matlab using finite difference
approach, for the temperature distribution of a plane, with
heat source. The distance between the grid points for the
curved side has been considered as a variable. Therefore, the
accuracy of the solution has been increased.

NOMENCLATURE
e rate of heat generated in the unit

volume [W/m’]
thermal conductivity [W/mK]

source term [K/m’]

k
e
k
f source function
T temperature [K]
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