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Some Classes of almost r-Contact Riemannian Manifolds
and Kenmotsu Manifold

Geeta Verma, Virendra Nath Pathak

Abstract—  Certain classes of almost r-contact
Riemannian Manifolds, viz., almost Kenmotsu, nearly
Kenmotsu, Quasi-Kenmotsu and special r-contact metric
Manifolds are defined and obtained some properties of
these manifolds. Also, it has been shown that the structure

vector field 5 of the almost r-contact metric structure

(®,<§,U,G) is not a Killing vector field on a nearly
Kenmotsu vector field

Index Terms— almost r-contact Riemannian manifold,
Sasakian manifold, Kenmotsu Manifold, Killing vector
field.

I. INTRODUCTION

The study of odd dimensional manifolds with r- contact and
almost r-contact structures was initiated by Boothby and
Wang in 1958 rather from topological point of view. Sasaki
and Hatakeyama reinvestigated them using tensor calculus
in1961.Almost r-contact metric structures and Sasakian
structures viz., almost Sasakian , nearly Sasakian etc., were
proposed by Sasaki [5] in 1960 and 1965 respectively. Later,
Kenmotsu [3] defined a class of almost r-contact Riemannian
manifold, called Kenmotsu manifold, similar in parallel to
Sasakian manifold in 1972. In this paper, we defined almost
Kenmotsu, nearly Kenmotsu, Quasi-Kenmotsu and special
r-contact metric Manifolds. The relation among these
manifolds has been obtained and studied some properties of
these manifolds.
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1. Peliminaries

2m+r
Let M =M be a (Zm + I") dimensional almost r-contact metric manifold with structure tensors

((q),gp ,T]p , G) where @ is a tensor of type (1,1), gp is a vector field , T]p is a 1-form and G is the associated

Riemannian metric on M. Then definition, we have

O2X=X=-X+nP(X0)E,, DE,=0
1.1

G(OX,DY)=G(X,Y)-nP (X)nP ()

The fundamental 2-form €2 is defined by:

(1.2) Q(X, Y) = G(Y, Y) where we put } =0X.

If M is an almost r-contact metric manifold, we have

(1.3) (DxQY,5p)=~(DxnP)(Y)

(14) (DxQ(Y,2)-(Y.Z)=(DxnPY¥MP (Z)+(DxnP)2ZmP ()

Where D is the Riemannian connection determined by the metric G.
On the almost r-contact metric manifold if further we have

15) (Dx@)(Y)=-nP (V)(X)-G(X,V)E)

It is called Kenmotsu Manifold [3].
From (1.1) and (1.5), we get

(1.6) DXép:—}:X—np(X)ﬁp

Then from equations (1.1) and (1.6), we get
an  (DxnP)¥)=G6X.V)-nP X nf ¥)=GX.Y)

Similarly from (1.5) we also have
(DxQ)(Y,Z)+(DyQ(Z,X)+(DzQ)(X,Y)
(1.8) _ _ _
= 2P (NG, 2)+nP (NG(Z,X)+nP (Z2)G(X,Y)

An almost r-contact structure is said to be Normal if N (X , Y ) vanishes, where

def
(1.9) N (X,Y) = Nop((X,Y)+dnP (X,Y)é »

Here, N(D (X, Y)is known as the Nijenhuis tensor of D .

2. Almost Kenmotsu and S-r-contact metric manifolds:

Definition (2.1): An almost r-contact metric manifold M on which there exists a function f such that T]p = df if

d n b — (0. Then the manifold M is called an Almost Kenmtsu manifold (or) r-contact metric manifold.
From the above definition, if D is an affine connection on r-contact metric manifold, we have

ene  (DxnP)¥)-(DynP)X)+nP[T(X,Y)]=0
Where T is the torsion tensor of D.
If D is symmetric, then from (2.1)(a), we have
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enw  (DxnP)Y)-(Dyn?)(X)=0

Note that , in the sequel, we shall always take D as a Riemannian connection in this paper.
Definition (2.2): An almost Kenmotsu manifold (r-contact metric manifold) on which if the condition

@y (DxnP) V) +(DynP)(X)=2G(X,Y)
Is satisfied, then it is called a special r-contact metric manifold or in short S-r-contact metric manifold.
Therefore, from (2.1)(b) and (2.2), for an S-r-contact metric manifold, we get

@y (DxnPH¥)=Dyn?P)(X)=G(X,Y)=-QX,Y)

Theorem (2.1): In an almost r-contact metric manifold, if DX& p =X- n p (X ) § p is satisfied, it is an S-r-contact

metric manifold.
Proof: On the almost r-contact metric manifold, we have

(DxnP)¥)=G(Dxé&,.Y)=G(X -nP (X)E,.Y)=G(X.Y)
Similarly, we see that
(DynP)(X)=G(Y,X)

On adding and subtracting the above two values, we get both (2.2) and (2.3) respectively, which proves the theorem.
Preposition (2.1): In an S-r-contact metric manifold, we get

ey  Dx&p=X-nP0)¢E)
Proof: The equation (2.3) is equivalent to (2.4)
Corollary (2.1): The following holds on S-r-contact metric manifold:

@5 (DxQY.Ep)=G(X.Y)
Proof: Taking the covariant differentiation of Q(Y , 5 p) =0, we get
(DxQY,Ep)=-QY,Dxép) =Q(Y, X) = G(X,Y)

Theorem (2.2) : In an S-r-contact metric manifold, we have

(l) (DEQ)(X,Y)Z—'K(X,Y,Z,ép)

(2.6)
(i)  (DZzP)NX)=-K(Z,5p,X)

Proof: The equation — Q(}_’, Z) = (DYT] p )(Z) implies
~(DxQ)Y.Z)+(DxQ)NY,Z) +(DyQ)(X,Z) - (DyQ)(X,Z)
=G(DxDySp -DyDxsp—-Dix,y1sp-%)

Using (1.5), the above equation implies
n? MNGX,2)-nP (X)G(Y,Z2)=—K(X,Y,Z,Ep)

Which can also be written a (2.6) (i) and hence, also we have (2.6) (ii).
Theorem (2.3) : On an S-r-contact metric manifold, the condition

@.7) (D7Q)(X,Y)=nP (X)GY,Z)-nP (YV)G(X,Z)
Is equivalent to the conditici B o
2.8) (DZ(X,Y)=~"K(X,Y,Z,5,)=0

Proof: From (2.6) and (2.7) we get
(DZQ)(X,Y) = —'K(X,Y,Z,ﬁp) =0

=P (X)G(Y,2)-nP (NG(X,Z)
Barring X and Y in the above equation, we get (2.8). Again, barring X and Y in (2.8), we get
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(DZQ)(X,Y) =nP (Y)(DZ(X,§p) -nP (XNDZQ(Y.Ep)
Using (2.5), the above equation gives (2.7).

3. Quasi Kenmotsu manifold:
Definition (3.1): An almost r-contact metric manifold is said to be Quasi Kenmotsu manifold if

6 (DyQY,2)+(DyQ)Z,X)+(D7Q)(X,Y) =0

Theorem (3.1): The necessary and sufficient condition for a Quasi-Kenmotsu manifold to be Normal is

6y (DzX,Y)=-nPX)(DznP)Y).

Proof: We know that the necessary and sufficient condition for a Quasi — Kenmotsu manifold which is an almost r-contact
manifold to be normal is N = (. That is,

No (X,Y)+dnP(X,1)§, =0,
Which is represented as
(DY (Y. Z)— (DyQ)X,Z)+(DxQ)(Y,Z)—(DyQ)X.Z)+dnP (X,Y)nP (2)=0 By

using the equations (1.8),(1.4) and (2.3) the above equation gives (3.2).

4. Kenmotsu manifold:

Definition (4.1): An S-r-contact metric manifold on which the equation (2.8) holds is called a Kenmotsu manifold.
Theorem (4.1): A normal S-r-contact metric manifold is Kenmotsu.

Proof: By N (X,Y) = 0, we have

(DY, Z) = (Dy(X, Z2) +(Dx (Y, Z) - (DyQ)(X,Z) +dn P (X,.Y)n P (Z) =0
Using the equations (2.1), (1.8),(1.4) and (2.3) respectively, the above equation gives

(DZ (X, Y) =P (X)G(Y,Z)+nP X)mP )nt (2),
Which also implies

(Dz(X. V) =P (XN)G(Z.V)+nP (NG(Z,X).
This shows that the manifold is of Kenmotsu type. Hence, an alternate definition of Kenmotsu manifold is given as: A Kenmotsu
manifold is a Normal S-r — contact metric manifold.

5. Nearly Kenmotsu manifold:
Definition (5.1) : An almost r-contact metric manifold on which

s) (Dx ®)Y) +(Dy ®)(X) =-nP (X)(X)-nP (X))
Is satisfied, is called a nearly Kenmotsu manifold.
Theorem (5.1): On nearly Kenmotsu manifold 5 p is not a Killing vector field.

Proof: Operate (5.1) with G and put ¥ = gp , we get
(DxQ)(Sp,2)+(Deg Q(X,Z) =2, X)
Using (1.3) and barring Z in this equation, we see that
6y —(DxnP)2)+(Dg QNX.Z)=-QZ.X)
Consequently, we have
~[(DxnP)Z)+(DznP)X1-[(Dg QNX.Z)-(Dg Q)X Z)]=2Q(X.Z)
Use of (1.4) in this equation yields
) —[(Dan)(Z)+(Dznp)(X)]—(D(;pnp)(X)np(Z)—(Dgpnp)(Z)np(X)
=20(X,Z)

Writing gp for X in (5.2), we get (Dép n p )(Z) = 0 which proves the theorem.
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Theorem (5.2): A normal nearly Kenmotsu manifold is Kenmotsu.
Proof: Since we have N =10 , it holds that

[X.Y]+[X,Y]-[X.Y]-[X.Y]+dnP (X,Y)& ), =0

Operating the above by 1] p implies

4 nP

[D%¢)Y —(Dy$)X]1+dnP (X,Y)=0

Barring X in (5.1), and on operation with 7] p , we get

5 P (DY =P (Dyp)X.

Similarly, we see that

co  nPDyp)x =-nP(Dyp)y
Using (5.5) and (5.6), equation (5.4) assumes the form

(DXxY.&p) —(DYQ(X, 6 p) +dnP (X,Y) =0.

Use of (1.3) in this equation yields d n p (X , Y ) = 0 which shows that the manifold is of almost Kenmotsu. By equation

(2.2) it is of S-r-contact metric manifold and therefore the result follows from theorem (4.1).
Theorem (5.3): A manifold which is of nearly Kenmotsu and Quasi Kenmotsu is of Kenmotsu.

Proof: On a Nearly Kenmotsu manifold, we have

(DxQ)Y,Z)+(DyQ)X,Z)=-nP (X)G(Y,Z)-nP (Y)G(X,Z)

Adding the above equation to (1.8), we get

2Dy Q)Y,Z2)+(DzQ)(X.,Y)

(5.7)

=3P (NGX,2)-nP (X)G(Z,Y)-2nP (2)G(Y, X)

From (1.5) we have

68 (DyQ)Z.Y)+(DzQ)X,Y)=-nP(X)G(Z,Y)-nP(2)G(X,Y)

Hence from (5.7) and (5.8) we have

which proves

(DxQ)Y,2) =P (GX,2)-nP (2)G(Y,X)

(Dx®)(Y)=—nP (¥)X)-G(X. V)&,

It shows that the manifold is Kenmotsu.
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