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Abstract— In the present paper some generalization on
fixed point and common fixed point theorems in complete
Fuzzy 3-metric spaces are established

Index Terms— Fuzzy metric spaces, fuzzy 3- metric
spaces, fixed point, Common fixed point.

I. INTRODUCTION

Highlight a section that you want to designate with a certain
style, The study of common fixed points of mappings in a
fuzzy metric space satisfying certain contractive conditions
has been at the center of vigorous research activity. In1965,
the concept of fuzzy sets was introduced by Zadeh [36]. With
the concept of fuzzy sets, the fuzzy metric space was
introduced by O.Kramosil and J. Michalek [25] in 1975.
Helpern [19] in 1981first proved a fixed point theorem for
fuzzy mappings. Also M.Grabiec [17] in 1988 proved the
contraction principle in the setting of the fuzzy metric spaces.
Moreover, A. George and P. Veeramani [16] in1994 modified
the notion of fuzzy metric spaces with the help of t-norm, by
generalizing the concept of probabilistic metric space to fuzzy
situation. Consequently in due course of time some metric
fixed point results were generalized to fuzzy metric spaces by
various authors. Gahler in a series of papers [13, 14, and 15]
investigated 2-metric spaces. Sharma, Sharma and Iseki [30]
studied for the first time contraction type mappings in 2-metic
space. We know that that 2-metric space is a real valued
function of a point triples on a set X, which abstract properties
were suggested by the area function in Euclidean spaces. In
the present paper we are proving a common fixed point
theorem for fuzzy3-metric spaces for weakly commuting

mappings which are compatible also.
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2. SOME FIXED POINT THEOREMS IN FUZZY 3-METRIC SPACE

Definition (2 A): A binary operation *: [0, 1] x [0,1] x [0,1] x [0,1] —#[0,1] is called a continuous t-norm if ([0,1],*) is an
abelian topological monodies with unit 1 such that &, * by * ¢; #d = a, * by * ¢, * d, whenevera, = a, , b; = b,,
£y == €; and dy = dyforall ay, a4, by, by, £4,5 and dy, dsare in [0,1].

Definition (2 B): The 3-tuple (X, M, *) is called a fuzzy 3-metric space if X is an arbitrary set, * is continuous t-norm and M is
fuzzy set in X * X [0, 227 satisfying the followings

(FM" —1): M(x,y,z,w,0) =0

(FM" = 2): M(x,y,z,w,t) =1,¥Vt =0

(FM" — 3): M{x,v,zw, t) = M(x,w,z,v,t) =

M(z,wx,y,t) ="

(FM" — 4): M(x,y,zw,t; +t, +t.) =

M(x,v,z,u, ty)* M(x,y,u,w,t,) =

M(x,u,z,w,ty) * M(x,v,z,w,t,)

(FM" — 5): M{x,v,z,w): [01) —

[0,1] is left continuous,V x,y,z,u e X, ty,ty, tq, t, =

0

Definition (2 C): Let (X, M, *) be a fuzzy 3-matric space. A sequence 1, J in fuzzy 3-metric space X is said to be convergent
toapoint x € X,

lim, ..  M(x,xabt)=1forallab €

Xandt =0

A sequence {xn} in fuzzy 3-metric space X is called a Cauchy sequence, if

lim M(x ¥, 0,ht)y =1, forall a,h £

L] ntpr

Xandtp =0
A fuzzy 3-matric space in which every Cauchy sequence is convergent is said to be complete.

Definition (2 D): A function M is continuous in fuzzy 3-metric space, iff whenever for all @£X and £ = 0.
X, XV, *vthenlim, ,_ M(x_ ¥y, abt)=
M(x,v,a,t),vabeEXandr =0

1. DEFINITION (2 E): TWO MAPPINGS A AND S ON FUZZY 3-METRIC SPACE X ARE WEAKLY COMMUTING IFF
M(ASu,5Au,a,b,t) = M({Au,S5u,a,t),Vu,a, b €
Xandt =0

3. MAIN RESULT

Theorem 3.1 Let (X M ,*j be a complete fuzzy 3-metric space and let F and T be continuous mappings of X in X. Let A be a
self mapping of X satisfying {A,F} and {A,T} are weakly commuting and
(3.1a) A(X) € F(X) N T(X)
(3.1b)
M(Ax, Ay, a,b.t) =
Min{M(Fx,Ty,a, b, t)}, M(Fx,Ax,a,b,t), M(Fx,Ay,a,b, t),

[ M(Ty,Av,a,b,t), M(Ax,Tv,a,b,t), M(Fy, Av,a, b, t)} ]
Forall =, ¥ C X where +: [0,1] * [0,1] is a continuous function such that #*(t} > t foreach 0 = ¢t = 1 and
r(t) = 1fort = 1;a,b € X. Then sequence {xn} and {}Fn} in X are such that
x, %y, = 7= M(x,y,abt) —
M(x,v,a,b,t)
where t == 0 (3.1c)
Then F,T and A have a unique common fixed point in X.
Proof: We define a sequence §%,, } such that Fx 5, ;1 = Ax,, and Tx5,55 = A%,,.4,1n = 1,2, ... We shall prove that
{Ax_ }is a Cauchy sequence forn = 0,1,2, ...
G, = M(Ax,, Ax,.,,1) < Lin=10123, ...

Gy, = M(Ax2n+1’ szn,t]
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[Min{M(Fxpy41, T3, @, b, )}, M(Fxp, 19, A%y 49, a,B, £), M(Fx 54, Axy, a, b, £,
L M(Tx,,, Ax,,,a,b, t), M(Ax,, .4, Tx,,,.a,b,t), M(Fx,,, Ax,,,a,b,t)} ]

M in{M(Ax,,, Axs,_.a b, t) L, M(Ax,,, Ax,,.q.a, b, t), M(Ax,,, Ax,,.a, b, t),

| M(Ax,, _4,Ax,,,a,b,t], M(Ax,, .4, Ax,,_4,a,b,t), M(Ax,, _,, Ax. ,a,b,t)} ]

- r Min{M(Ax,,, Ax,, 4, a,b,t)}, M(Ax,,, At .y, 0, b,t), M(Ax,, , Ax,, ,a3,b,t), ]
= IM(Ax,,_,, Ax,,,a,b,t), M(Ax,,.q, Axy,,a, b, t), M(Ax,, 4, Ax,,, 0, b, t), M(Ax,, 4, Ax,,, a,b,t)}
= r[Min{Gy, _1, Gy L, Go— 2y Gy Gy 1, Gy 131

If Gy —y = Gy, then Gy = 7[Gypy 3] = Gy oy

A contradiction, therefore Gy, —y < Gy,

Therefore Gy, = 7[Gap 1] = Gapyg

Thus {G,,, : 1t = 0} is increasing sequence of positive real numbers in [0,1] and therefore tends to a finite limit Z = 1. It is

clear that L=1 because if L << 1 then on taking limit %t — ©0 we get L = (L) = L, a contradiction. Hence L=1.
Now for any integer m,

. f t t
M(Ax, Ax, .., a,bt) =M [Axn,Ale, a,b,;) ¥ e eeeeen® M (Axn+m_1,ﬂxn+m, a, b;)

L L
=M (Axn,flxnﬂ, a, b,;) E o e M (Axn,ﬂxn_l, i, b,;)

limit n — oM (Ax,, Ax abt)=1=1=1=.. ...*1=1
Thus {Axn} is a Cauchy sequence and by completeness of X, {Axn} converges to 1 £ X. So subsequence {F x2n+1} and

ntm’

{szn} of {H:In} are also converges to same point u.
Since A is R weakly commuting with F, so

t
M(AFx,,.1,FAx,, .5, a,b,t) = M (AF::;EHH, FAx,,.q,a,b, EJ

On taking limit 12 — ©0, AF x,, ., = FAx,, ;4 = Fu.Now we will prove Fu. = 1. First suppose that
Fu = u then there exist t = O such that M (Fu,u,t) < 1

Now

M(AFx,,.4,Fx,,, a,b,t) =

M(F?x, .., Tx, a,b,tj,M(F’zx:nﬂ,AFx:Ml,a,b,tj,M(F’thﬂ,ﬂx:n,a,b,t),}

M(Tx,,, Ax,,, a, b, t), M(AFx,,.,,Tx,,, a,b,t), M(Fx,,, Ax,,, a,b,t)

in’ & in’

Min{
r

M(Fuua,t) =7 [Mi’n {M (Fa, 1, a, b, ), M{Fu, Fu,a, b, t), M{Fu, 1, a, b, 1‘),}]
M{wuw,ab t), M(Fuua b, t), M(Fuu,a b,t)
M(Fu,u,a,b,t) = r[M(Fuu,ab,t)] =
M(Fu,u,a,b,t)
which is a contradiction.
Thus u is a fixed point of F. Similarly we can show that u is also fixed point of A. Now we claim that u is a fixed point of T.
Suppose it is not so then for any >0, M(w, Tw, a,t) < 1
M(Au, Tx,,, a b,t)
_, [Min {-4 M(Fu,T*x,,,a,b,t), M(Fu, Au,a,b,t), M(Fu, ATx,,, a,b, t), H
- (T2x,, ATx,,.a. b, t), M(Aw. T?x,,.. 0. b. t), M(FTx,,. AT x,,,. a. b.t)
M(u, T a,b,) = r [Min { M(u,Tu,a,b,t),M{u,u,a,b,t), M(v,Tu,a,b,t), I]
M(Tu, Tu,a, b, t), M(uw,Tu,a,b, t), M(Tu, Tw,a, b, t))
M(w, Ty, a,b,t) = r[Min{M(u, Ty, a,b,t)}]
Which is a contradiction so M {(Tw,u, a,b,t) = 1
Hence u is also a fixed point of T. That is u is a common fixed point of T, F and A.

Uniqueness: Suppose there is another fixed point ¥ # i, then

M(Ax, 4 bo) = [M . {M(Fx, Ty,a,b,t), M(Fx,Ax,a,b,t),M(Fx,Av,a, b,t) ,H
LAY @5 =T (M M(Ty,Av,a, b, t),M(4x,Ty,a,b,t),M(Fy, Ay, a, b,t)

M(Fu,Tv,a,bt), M(Fu, Au,a, b, t),M(Fu,Av,a, b, t) ,H

M({Auw, Av,a, b t) = [M {
(Au,4v,a,b.t) = |Min M(Tv,Av,a, b, t), M{Aw, Tv,a, b, t),M(Fv, Av,a, b, t)
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M(u,v,a,b,t), M(u,u,a,b,t), M(u,v,a,b, t],}]
M(v,v,a,b,t), M(w,v,a. b,t), M(v,v,a,b,t)
M{u,v,a,b,t) = r[Min{M(w, v, a, b, t)}] which is a contradiction so u=v.
Hence A, F and T have unique common fixed point.

M(u,v,a,b,t)=r [Miﬂ{
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