Cartesian Product of K- Hsu-Structure Manifold

Geeta Verma, Virendra Nath Pathak

Abstract— Cartesian product of two manifolds has been defined and studied by Pandey [1]. In this paper we have taken Cartesian product of k-Hsu-structure manifolds, where k is some finite integer, and studied some properties of curvature and Ricci tensor of such a product manifold.

Index Terms—: k-Hsu-structure generalized almost contact structure, KH-structure.

I. INTRODUCTION

Let M_1, M_2, \dots, M_k be k-Hsu-structure manifolds each of class C^{∞} and of dimension n_1, n_2, \dots, n_k respectively. Suppose $(M_1)m_1,(M_2)m_2,...,(M_k)m_k$ be their tangent spaces at $m_{1\in M_1}$, $m_2\in M_2$,....., $m_k\in M_k$, then the product space $(M_1)m_1\times (M_2)m_2\times \dots \times (M_k)m_k$

where . Vector addition and scalar multiplication on above product

contains vector fields of the form (X_1, X_2, \dots, X_k) ,

space are defined as follows:
(1.1)
$$(X_1, X_2, ..., X_k) + (Y_1, Y_2, ..., Y_k) = (X_1 + Y_1, X_2 + Y_2, ..., X_k + Y_k),$$

(1.2)

$$\lambda(X_1, X_2, \dots, X_k) = (\lambda X_1, \lambda X_2, \dots, \lambda X_k)$$

where $X_i, Y_i \in (M_i) m_i, i = 1, 2, ..., k$ and λ is a scalar.

Under these conditions the product space

$$(M_1)m_1 \times (M_2)m_2 \times \dots \times (M_k)m_k$$
 forms a vector space.

Define a linear transformation F on the product space

Manuscript received Feb 09, 2016

Geeta Verma, Department of Mathematics, Shri Ramswaroop Memorial Group of Professional Colleges, Tewariganj, Faizabad Lucknow-227105

Virendra Nath Pathak, Shri Ramswaroop Memorial University. Lucknow-Deva Road-225003

(1.3)

$$F(X_1, X_2, ..., X_k) = (F_1 X_1, F_2 X_2, ..., F_k X_k)$$

where F_1, F_2, \dots, F_k are linear transformations on $(M_1)m_1, (M_2)m_2, \dots, (M_k)m_k$ respectively. If f_1, f_2, \ldots, f_k be C^{∞} functions over the spaces $(M_1)m_1,(M_2)m_2,\ldots,(M_k)m_k$ respectively, we define the C^{∞} function f_1, f_2, \dots, f_k on the product space as

(1.4) $(X_1, X_2, ..., X_k)$

$$(x_1, x_2, \dots, x_k)$$

 $(f_1, f_2, \dots, f_k) = (X_1 f_1, X_2 f_2, \dots, X_k f_k)$

Let D_1, D_2, \dots, D_k be the connections on the manifolds M_1, M_2, \dots, M_k respectively. We define the operator D on the product space as (1.5)

where
$$(D_{(X_1, X_2, ..., X_k)} \ X_1 \in (M_1) m_1, X_2 \in (M_2) m_2, ..., X_k \in (M_k) m_k, ..., Y_k) = (D_{1_{X_1}} Y_1, D_{2_{X_2}} Y_2, ..., D_{k_{X_k}} Y_k)$$
Vector addition and scalar multiplication on above product

Then D satisfies all four properties of a connection and thus it is a connection on the product manifold.

II. SOME RESULTS

Definition Let there be defined on V_n , a vector valued linear function F of class C such that

$$F^2 = a^r I_n \qquad 0 \le r \le n$$

where r is an integer and a is real or imaginary number. Then F is called Hsu – structure and V_n is called the **Hsu – structure** manifold.

Theorem 2.1: The product manifold

 $M_1 \times M_2 \times \dots \times M_k$ admits a Hsu-structure if and only if the manifolds M_1, M_2, \dots, M_k are Hsu-structure manifolds.

Proof: Suppose M_1, M_2, \dots, M_k are Hsu-structure manifolds. Thus there exist tensor fields

 F_1, F_2, \dots, F_k each of type (1,1) on M_1, M_2, \dots, M_k respectively satisfying

(2.1)
$$F^2_i(X_i) = a^r X_i, \qquad i = 1, 2, \dots, k$$

Where a is any complex number, not equal to zero.

In view of equation (1.3) it follows that there exists a linear transformation F on $M_1 \times M_2 \times ... \times M_k$ satisfying

(2.2)
$$F^{2}(X_{1}, X_{2}, \dots, X_{k}) = (F_{1}^{2}X_{1}, F_{2}^{2}X_{2}, \dots, F_{k}^{2}X_{k})$$
$$= a^{r}(X_{1}, X_{2}, \dots, X_{k})$$

Thus, the product manifold admits a Hsu-structure.

Let us define a Riemannian metric g on the product manifold $M_1 \times M_2 \times \ldots \times M_k$ as

(2.3)
$$a^{r}g((X_{1}, X_{2},, X_{k}), (Y_{1}, Y_{2},, Y_{k})) = a^{r}g_{1}(X_{1}, Y_{1}) + a^{r}g_{2}(X_{2}, Y_{2}) + + a^{r}g_{k}(X_{k}, Y_{k}),$$

where g_1, g_2, \ldots, g_k are the Riemannian metrics over the manifolds M_1, M_2, \ldots, M_k respectively.

If $\xi_1, \xi_2, \ldots, \xi_k$ be vector fields and $\eta_1, \eta_2, \ldots, \eta_k$ be 1-forms on the Hsu-structure manifolds

 M_1, M_2, \ldots, M_k respectively, then a vector field ξ and a 1-form η on the product manifold

 M_1, M_2, \dots, M_k is defined.

We now prove the following results.

Theorem 2.2: The product manifold $M_1 \times M_2 \times \times M_k$ admits a generalized almost contact structure if and only if the manifolds $M_1, M_2,, M_k$ possess the same structure.

Proof: Let M_1, M_2, \ldots, M_k are generalized almost contact manifolds. Thus there exists tensor fields F_i of type (1,1) vector fields ξ_i and 1-form. η_i , $i=1,2,\ldots,k$ satisfying

(2.4)
$$F_i^2(X_i) = a^r X_i + \eta_i(X_i) \, \xi_i,$$

For product manifold $M_1 \times M_2 \times \dots \times M_k$.

$$F^{2}(X_{1}, X_{2},..., X_{k}) = (F_{1}^{2}X_{1}, F_{2}^{2}X_{2},..., F_{k}^{2}X_{k})$$

By the help of equation (2.4), takes the form

$$F^{2}(X_{1}, X_{2},...., X_{k}) = a^{r}(X_{1}, X_{2},...., X_{k}) + (\eta_{1}(X_{1})\xi_{1}, \eta_{2}(X_{2})\xi_{2},..., \eta_{k}(X_{k})\xi_{k}),$$
or

(2.5)
$$F^{2}(X) = a^{r}X + \eta(X)\xi.$$

Hence the product manifold admits a generalized almost contact metric structure. [2].

Theorem 2.3: The product manifold $M_1 \times M_2 \times \ldots \times M_k$ admits a KH-structure if and only if the manifolds M_1, M_2, \ldots, M_k are KH-structure manifolds.

Proof: Suppose M_1, M_2, \ldots, M_k are KH-structure manifolds. Thus

As D is a connection on the product manifold, we have

$$(D_{(X_1, X_2, ..., X_k)}F)(Y_1, Y_2,, Y_k) = D_{(X_1, X_2, ..., X_k)}\{F(Y_1, Y_2,, Y_k)\} - F\{D_{(X_1, X_2,, X_k)}(Y_1, Y_2,, Y_k)\}$$

In view of equation (1.3) and equation (1.5), this takes the form

$$\begin{split} (D_{(X_1,X_2,....,X_k)}F)(Y_1,Y_2,....,Y_k) &= D_{(X_1,X_2,....,X_k)}(F_1Y_1,F_2Y_2,....,F_kY_k) \\ &- F(D_{1_{X_1}}Y_1,D_{2_{X_2}}Y_2,....,D_{k_{X_k}}Y_k) \\ &= -(D_{1_{X_1}}F_1Y_1,D_{2_{X_2}}F_2Y_2,....,D_{k_{X_k}}F_kY_k) \\ &- (F_1D_{1_{X_1}}Y_1,F_2D_{2_{X_2}}Y_2,....,F_kD_{k_{X_k}}Y_k) \end{split}$$

$$=((D_{1_{X_{1}}}F_{1})(Y_{1}),(D_{2_{X_{2}}}F_{2})(Y_{2}),....,(D_{k_{X_{k}}}F_{k})(Y_{k})$$

= 0.

Thus, the product manifold is KH-structure manifold.

Theorem 2.4: The product manifold $M_1 \times M_2 \times \ldots \times M_k$ of Hsu-structure manifolds M_1, M_2, \ldots, M_k is almost Tachibana if and only if the manifolds M_1, M_2, \ldots, M_k are separately Tachibana manifolds.

Proof: Let a Hsu-structure manifolds M_1, M_2, \dots, M_k are almost Tachibana manifolds. Then

(2.8)
$$(D_{i_{X_i}}F_i)(Y_i) + (D_{i_{Y_i}}F_i)(Y_i) = 0, \qquad i = 1, 2, \dots, k.$$

3. Curvature and Ricci Tensor

Suppose $K_i(X_i,Y_i,Z_i)$, $i=1,2,\ldots,k$ be the curvature tensors of the Hsu-structure manifolds M_1,M_2,\ldots,M_k respectively. If K(X,Y,Z) be the curvature tensor of the product manifold $M_1\times M_2\times\ldots \times M_k$. Then we have

(3.2)
$$K(X,Y,Z) = [K_1(X_1,Y_1,Z_1), K_2(X_2,Y_2,Z_2),...,K_k(X_k,Y_k,Z_k)].$$

If $W = (W_1,W_2,...,W_k)$ be a vector field on the product manifold, then

(3.3)
$$K'(X,Y,Z,W) = g(K(X,Y,Z,W)),$$

$$K'(X,Y,Z,W) = K'_1(X_1,Y_1,Z_1,W_1) + K'_2(X_2,Y_2,Z_2,W_2) + \dots + K'_k(X_k,Y_k,Z_k,W_k)$$

Thus, we have

Theorem 3.1: The product of manifold $M_1 \times M_2 \times \ldots \times M_k$ is of constant curvature if and only if Hsu-structure manifolds M_1, M_2, \ldots, M_k are separately of constant curvature.

Theorem 3.2: The Ricci tensor of the product manifold $M_1 \times M_2 \times ... \times M_k$ is the sum of the Ricci tensor of the Hsu-structure manifolds $M_1, M_2, ..., M_k$.

Theorem 3.3: The product of manifold $M_1 \times M_2 \times ... \times M_k$ is an Einstein space if and only if the Hsu-structure manifolds $M_1, M_2, ..., M_k$ are separately Einstein space.

Cartesian Product of K- Hsu-Structure Manifold

Proof: Let the product manifold $M_1 \times M_2 \times \ldots \times M_k$ be an Einstein space. Thus

$$(3.5) Ric(X,Y) = Cg(X,Y),$$

Where $C = \frac{K}{n}$, K being the scalar curvature and n being the dimension of the product manifold. Then

$$Ric(X_i, Y_i) = Cg_i(X_i, Y_i), i = 1, 2, \dots, k.$$

Therefore the manifolds M_1, M_2, \ldots, M_k are also Einstein spaces.

References

- [1] H. B. Pandey, Cartesian product of two manifolds, Indian Journ. Pure Appl. Math, 12(1) (1981) 55-60.
- [2] J. Pant, Hypersurface immersed in a GF-structure manifold, Demontratio Mathematica, 19(3) (1986) 693-697.