International Journal of Engineering Research And Management (IJERM)
ISSN : 2349- 2058, Volume-03, Issue-02, February 2016

Ubiquitous Computing —

Concepts & Challenges

Dr. X. Joshphin Jasaline Anitha

Abstract— The terms Ubiquitous was first coined at the
beginning of the 90's, by Xerox PARC and IBM
respectively, and capture the realization that the
computing focus was going to change from the PC to a
more distributed, mobile and embedded form of
computing. This paper will describe where software and
hardware have combined to enable ubiquitous
computing, where these systems have limitations and
where the biggest challenges still remain.

Power
Interface

Index Terms— Ubiquitous Computing,
Management, Wireless discovery, User
Adaptation, & Location Aware

I. INTRODUCTION

Ubiquitous computing is a broad semantic definition. In
many cases, researchers define ubiquitous computing in their
research projects through examples. We use Weisers
definition of ubiquitous computing. He defines ubiquitous
computing as a phase in the development and use of computer
systems in which they permeate our environment and are
integrated in most artifacts, adding useful information
services in an unobtrusive manner. i.e., ubiquitous computing
is the method of enhancing computer use by making many
computers available throughout the physical environment, but
making them effectively invisible to the user.

The main future of ubiquitous computing is to create a user
centric and application oriented computing environment.
Such environments are different from the traditional
computing models since a physical space within the
environments supported by associated hardware and software
facilitates interactive information exchange between users
and the space. The availability of cheap computing devices
and wireless networks are making such spaces possible. A
user does not require to log into a single personal computer as
in traditional computing environments, but communicates
with a variety of computing devices in the space. Scalable
configuration is an important aspect in such space since the
same space is often used for different tasks at different times.

A. The evolving human-computer relationship

Internet, Internet2, intranets, extranets, cyberspace . . . it is
hard not to have heard or read about one of these terms in the
media. Several trends categorize computer use in the
information era.

1. Mainframe stage: Computers were used by experts behind
closed doors, and regarded as rare and expensive assets. This

Manuscript received Feb 12, 2016

Dr. X. Joshphin Jasaline Anitha, HoD, Department of Master of
Computer Applications , N M S S. Vellaichamy Nadar College ,
Nagamalai,Madurai, Tami Nadu, India

stage was the beginning of the information era. The
human-computer relationship was one of several humans to a
single computer.

2. Personal computing stage: In this stage the human
computer relationship became balanced in the sense that
individuals had one-on-one relationships with their
computers. This stage brought certain closeness into the
human-computer relationship.

3. Ubiquitous computing stage: In this stage one person will
have many computers. People will have access to computers
placed in their offices, walls, clothing, cars, planes, organs,
etc. This stage will have a significant impact on society

II. AN ONTOLOGICAL FRAMEWORK OF UC

Weiser’s classification of a ubiquitous computing system is
based on two fundamental attributes:

v Ubiquity: interaction with the system is available
wherever the user needs it.

v Transparency: the system is non-intrusive and is
integrated into the everyday environment.

According with this classification Abowd identified two

dimensions that provide a rather clear boundary for

ubiquitous computing systems and express the
relationship with other emerging research areas:

v User mobility: reflect the freedom the user has to
move about when interacting with the system.

v’ Interface transparency: applies to the system’s
interface and reflects the conscious effort end
attention the system requires of the user, either for
operating it or for perceiving its output.

User mobility

UbiComp

some

iterface)

nornea

nane some Interface transparency

An Ontological Framework

www.ijerm.com

Ubiquitous Computing — Concepts & Challenges

III. CHALLENGES FOR UBIQUITOUS COMPUTING

In the remainder of this paper we focus in more detail on
the challenges for ubiquitous computing systems, the progress
that has been made towards a solution, and the software
engineering work that still needs to be done by our
community. We will conclude this paper with a summary of
the most salient issues that need attention in this area.
Facing the Challenges

There are many challenges facing the design of successful
ubiquitous computing systems. Here we focus on four of the
issues for which progress is being made and therefore
represent a challenge worth undertaking power management,
wireless discovery, user interface adaptation, and location
aware computing.

A. Power management

The power consumption of Ubiquitous computing devices
can be divided into three main components: processing,
storage, and communication. For each of these categories,
there is usually a technique for controlling power that
involves “turning a knob” for a given component: reducing
power by decreasing speed, range, or capacity by simply
lowering duty cycle of the device. For example, it is quite easy
to lower the power of a wireless transmitter by reducing the
output power, effectively reducing its range. Alternatively, it
can be highly effective to control power by switching between
heterogeneous subsystems within a conceptual element of the
system: e.g., to switch between radios technologies such as
Bluetooth and WiFi for wireless communication. However,
this technique, which can offer an order-of-magnitude
improvement in power consumption, requires more software
support to deal with the accompanying heterogeneous
software interfaces to these systems.

Processing is a highly variable component for a ubiquitous
computing platform — its requirements can very from very
little for simple monitor-and-wait applications to extremely
high for computationally intensive tasks such as running a
neural net. Within a single processor, it is possible to control
the power consumption by either selectively deactivating
individual blocks, like the multiplier, when they are not in use
or lowering the operating voltage to slow the part down and
also reduce the energy per operation using a technique known
as DVM. Beyond this, it can be highly effective to control
power consumption by utilizing multiple kinds of processors
within a system: for example, a full-function processor for the
main computation, an embedded microcontroller for sensor
monitoring, and a network processor for processing network
packets. In fact, many systems already possess multiple
processors, e.g. the firmware in a wireless card, but their
functions are largely hidden, reducing their overall
effectiveness. The software engineering challenge is figuring
out a way to expose the processing components of individual
subsystems for general use, allowing a system to “push down”
some operations to the sub-processor when beneficial,
furthermore, this would need to be done in a flexible manner,
so that the software language used is not tied to the specific
components, allowing a write-one run-anywhere policy for
such hierarchical processor systems.

Wireless interfaces present a similar challenge to that of
multiple processors. WiFi, Bluetooth, and Ultra Wide Band
(UWB) are all either existing or up-and-coming radio

10

standards with widely varying capabilities and characteristics.
Each one has various power-control and performance
settings, for example the basic transmit strength or listen duty
cycle, but an order-of-magnitude performance gain is possible
by utilizing multiple radios in one system because each
technology is individually targeted at a specific usage model.
For example, WiFi is suited for in-home wireless Internet
browsing, while Bluetooth is better suited for low-power
devices such as cell-phones. Often, the overall optimal
solution will require combining multiple radio systems into
one device: organizing them as a wireless hierarchy, that, for
example, capitalizes on the low energy-per-bit of WiFi, but
can rely on the low standby power of Bluetooth. For the
implementation, each radio system encompasses different
characteristics, connection model, and programming
interface. The software engineering challenge is to provide a
layer of abstraction that effectively offers the overall best
service to the platform without unnecessarily complicating
the higher-level interfaces. For example, a way to offer the
power saving benefits of using Bluetooth within the context of
an in-home WiFi network, even though a single Bluetooth
node will not reach though an entire house.

Local storage is another sub-system that can consume
considerable power in a Ubiquitous system. There are many
different kinds of storage media that are available for such
systems: physical disks, flash, RAM, etc... Similar to the
processor- and wireless- subsystems, each kind of storage
presents a different power profile to the system. Flash, for
example, is very good for idle and read power, but is
considerably lower density than a physical disk and is very
slow for writing. Likewise, the software engineering
challenge is to provide flexible access to storage capabilities
without over complication. One concrete example is
managing the power consumption of a full-fledged operating
system like Linux in the embedded environment. Although it
provides a great wealth of capabilities, its operational
memory footprint will be considerably larger than a purely
embedded operating system like TinyOS. This operational
footprint is important because if it was small enough to fit in
the system’s available SRAM, the system could power-down
its DRAM during an extended sleep operation while still
offering quick-wakeup capability.

These three basic components all have great potential for
power optimization at the considerable risk of
overcomplicating the software interfaces. The reason systems
like Java, Linux, and TCP/IP networking have become so
popular is that they are uniform: software engineers don’t
need to do something different for different environments.
True, they don’t always live up to the “write once, run
anywhere” mantra, but they at least offer a “learn once, use
anywhere” environment, which greatly increases their
potential. The challenge with these heterogeneous systems,
which offer a complex array of capabilities and trade-offs, is
to generate a similar uniform interface that programmers can
utilize. There are obviously other considerations with power,
as described briefly in the following section, but the ability to
effectively manage the applications running on embedded
platforms is a key enabling step.

B. limitations of wireless discovery

Another significant problem facing emerging Ubiquitous
computing systems is the management of the many small

www.ijerm.com

International Journal of Engineering Research And Management (IJERM)
ISSN : 2349- 2058, Volume-03, Issue-02, February 2016

computing nodes comprising a large, complex system. As the
number of computers per person increases, the conceptual,
physical, and virtual management of these devices becomes a
problem. Going forward, embedding processing in everyday
objects, such as a coffee cup or chair, exasperates this
problem: drastically increasing the number of computing
devices that must somehow be managed.

One major problem facing any large collection of small
devices is just a basic understanding of what exists: if we
know something exists, how do we find it, or, if we have a
collection of devices, how do we know what they are? Often,
people have trouble keeping track of just their keys and
cell-phones — imagine this problem on a grand scale where
there are hundreds of devices around the house waiting to be
lost, found, and eventually used! One solution to this problem
is to release objects from a specific designation, and treat a
television as just a television, instead of a specific television.
This shift, which will make it easier to juggle a multitude of
devices in the physical space, raises a challenge for software
systems that now must be able to interact with many devices
that have no unique individual address or identity. Typically,
computer systems are addressed by a unique name, or IP
address — a convenience that just may not exist in a deeply
embedded environment.

Several emerging technologies, such as UPnP (Universal
Plug and Play Device Architecture) specifically aim to make
it easier to manage multiple devices in the home environment.
For example, they aim to make it easy to bring home a new
device, such as a scanner or home theatre, and hook it up to
your home network: You bring it home, plug it in, and use
your desktop PC or smart TV to coordinate its actions with
other devices. By utilizing the infrastructure supplied by a
coherent home network and desktop PC, this system makes it
easy to connect devices — however, requiring manual
connection and configuration would quickly become onerous
for a large number of very small devices. So, although these
technologies work for individual devices that can be
recognized and handled by people, it is not clear how they will
adapt to the challenges outlined in the previous paragraph.

At a basic level, Ubiquitous devices will not always be
plugged into a wired network, requiring integrated wireless
discovery techniques that raise significant questions about
network integration. One significant problem in this space is
the basic neighbor’s printer problem: how do you integrate a
new wireless printer into your home network without
accidentally incorporating your neighbor’s printer, or giving
your neighbor access to your device. Basically, wireless
networks are virtual in their physical topology — it is easy for
them to co-exist in the same space while presenting a different
logical construct to the user — a problem that is not nearly as
common with wired networks. One solution is to require
physical interaction with your new device, maybe temporarily
plugging in a USB cable to initially configure the setup, or
maybe you assume/hope that your neighbor bought a different
model printer than you, making it easy to discern. But in the
end, this simple scenario of bringing home a new device with
“easy to use” wireless networking raises many fundamental
challenges about how these devices are connected and
associated. Now, just imagine this problem for a hundred
small embedded computing devices!

The shift from single devices with well-known names and

11

easy to discern network connections to a multiplicity of
semi-anonymous objects arbitrarily connected to other nearby
objects, presents a significant challenge for both software
engineering and the basic supporting technologies. Systems
will need to be mode intelligent and adaptable, automatically
figuring out which devices are appropriate for any given set of
interactions, and which devices “belong” in a particular space.
Of course, on top of this there is also the quintessential
problem of power management: how can you find and replace
all the batteries needed to power the multitude of devices in an
environment! Solutions to these problems must balance ease
of use, privacy, security, cost, maintainability, and any
number of additional constraints, making them anything but
trivial.

C. user interface adaptation

A characteristic of Ubiquitous Computing systems is that
they integrate a wide variety of devices from very small
sensors, to palm, notebook and workstation computers, each
with very different display sizes. From a system designer’s
point of view, applications need to operate effectively in this
heterogeneous environment, and the users must be able to
gain control of each component unencumbered by the
physical difficultly imposed by size. For example, small
devices imply small displays, and even the best UI design at
this scale requires the user to navigate a series of terse menus.
The problem is illustrated by typical experiences with PDAs,
often loaded with features but never used because they are
buried in the complexity of the interface. Some time peoples
may face some problems about beaming a phone number
between two Palm devices using an Infrared link, and in the
end giving up, instead resorting to writing the number on a
post-it note, and sticking on the recipient’s PDA.

When users need access to information contained in a
computer, the most effective interfaces are those well adapted
to people. Long before computers existed many mechanical
and informational tools were honed based on this principle,
for example, books can be manufactured at any scale, but
paperbacks are the convenient size they are because they are
optimized for readability and portability. When building
small devices for Ubiquitous computing applications, a means
to adapt the interface to a more person oriented size can make
the difference necessary to cross the usability threshold.
Consider the cell phone; perhaps the most successful
Ubiquitous Computing device to date, but limited by its size,
the display is also constrained. But by using a local wireless
connection to a more capable device, it is possible to access
data on the phone using a familiar web browser interface on a
full-sized desktop display.

To take full advantage of this capability, applications
written for use with the phone display need to be able to adapt
to a larger display when it becomes available. There are also
occasions when information flow from applications written
for servers with large displays would like to shrink their
output for display on a smaller device. This situation occurs
today with WAP based phones that wish to access WWW
content providers such as yahoo.com. Current approaches
detect the type of device in use and connect to a server
capable of generating the required graphic elements on the
small display, but to make use of this model the content for the
smaller display size needs to be individually crafted.

www.ijerm.com

Ubiquitous Computing — Concepts & Challenges

A more flexible approach would allow application writers
to generate Uls based on an abstract definition of the user
interface and in combination with knowledge of the
capabilities of the target display, generate the user interface
components on the fly. Four components are needed to build
such a system, a 1) user interface specification language 2)
two-way control protocol 3) appliance adaptors and 4) the
graphic user interface generator. Despite the success of this
work it is a hard to create the building blocks that will result in
widespread use and be adopted by product designers as a
standard.

For any software product, the user interface is the one piece
of the system that is placed in full view of the customers, and
may make or break the business depending on its usability.
For dynamic Uls, designers would be uncertain of how their
application will manifest itself on the various screen sizes
used by their customers. Often, the lowest common
denominator ends up defining the result; however, software
tools that clarify the result across a common range of target
platforms can mitigate this issue. The up side has great
potential as the richer the display, the richer the automatically
generated U, and potentially the better the user experience. In
Ubiquitous Computing environments, the range of target
screen sizes is far greater than typically found in the PC
world; therefore, if the software products continue to work in
these environments, the market size and potential revenues
will be considerably larger. However, significant software
engineering hurdles still remain in creating standards and the
basic mechanisms to generate and display content to the user.

D. Location aware computing

One of the distinguishing features of Ubiquitous
Computing over conventional distributed computing is the
use of location to augment the data services available. Unlike
the Internet in which a server is typically unaware of the
location of the client, when computing becomes embedded
into the local environment, interaction can be customized to
improve the result. For example, a query about the multimedia
equipment nearby can be automatically qualified by the
current location and return information that is relevant to that
room, rather than all the facilities available in the building.
Likewise information accessed at a particular location on one
occasion can be remembered and potentially offered to others
who are about to make similar queries, thus opening up
options that some people may have been unaware of.

The use of location context goes beyond just knowing
where you are, but can take into account ‘who’ is with you,
further building contextual clues about the activity undertaken
at that time. A system supporting a conference room
application might automatically provide electronic links on an
electronic whiteboard referencing all the documents that were
accessed by that group on the previous occasion they met.
Likewise, messages with a low priority might not be delivered
with an audible notification to a laptop, if the system is aware
that other people are nearby and a meeting is likely to be in
progress.

In some universities, experimental context-aware toolkits
have been built to facilitate the design of context-based
systems. However these tools have not seen widespread
adoption. One possible reason is the uncertainty of location
estimates: it may not be possible for a system to know exactly

12

where something is, so how does it describe the range of
possible locations? To address these concerns, research at the
University of Washington created the Location Stack as a
means of working with several sources of location
information at once, and fusing the data together in a way that
improved the overall accuracy and allows applications to
understand the error distribution involved with the location
estimate.

There are clear indications that location-based data enables
valuable applications. Some mobile service providers’ service
has a feature to allow its clients to make location queries such
as finding the nearest restaurants, based on location data
inherent to the current cell tower in use. The most successful
search engine, Google, has recently added local search to their
search engine, allowing a query to be qualified by location. At
present, a user is requested to type in a qualifying string for
the location, but this service is ripe for extensions based on
GPS and other location automation technology. Successful
adoption of these services in the metropolitan area may well
provide motivation for system designers to use these
techniques at the local level, in much the same way that global
web searches, are being complimented with Google Desktop
in order to have a similar service run on the file system of a
personal machine.

To date, the tools for location-based applications have not
been available on mass to the industry. Although we now
know how to turn wireless infrastructure into location-finding
systems, these mechanisms have not filtered into the standard
system building tools. A challenge for the community is to
take these techniques and turn them into location-based APIs
at the platform level, which can then be accessed on a wide
variety of devices and utilize a variety of location
technologies.

IV. CONCLUSION

Ubiquitous Computing were in some senses a way of
taming real environments by placing embedded computation
directly in the artifacts that are needed for physical work, and
using orchestrated wireless communication to build a fully
integrated system, with greater user value through
augmentation. In this short paper we have focused on issues
that are directly related to Ubiquitous Computing, but it
should also be pointed out that many of the problems
associated with distributed systems in general are also
embodied in this area. In ubiquitous computing the
applications are most likely aimed at diverse work practices
with the computation hidden from view, and thus unless the
maintenance of these systems can be automated the
deployment will remain limited to domains in which the help
from an expert is readily available.

V. REFERENCES

[1] Weiser, M., The Computer for the 21st Century, Scientific
American Ubicomp paper, September 1991,
(http://www.ubiq.com/hypertext/weiser/SciAmDraft3.ht
ml)

[2] Weiser, M., Seely Brown, J., Designing Calm Technology,
Xerox PARC, December 21, 1995,
(http://www.ubiq.com/hypertext/weiser/calmtech/calmte
ch.htm)

www.ijerm.com

International Journal of Engineering Research And Management (IJERM)
ISSN : 2349- 2058, Volume-03, Issue-02, February 2016

[3]Microsoft. Understanding UPnP: A White Paper. 2000.
http://www.upnp.org/download/UPNP_UnderstandingU
PNP.doc,

[4] Want. R.; Schilit, B.; Adams, N.; Gold, R.; Goldberg, D.;
Petersen, K.; Ellis, J.; Weiser, M., "An Overview of the
Parctab Ubiquitous Computing Experiment", IEEE
Personal Communications, Vol 2. No.6, 1995.

[5]Weiser, M. "Some Computer Science Problems in
Ubiquitous Computing". Communications of the ACM,
July 1993.

BIOGRAPHIE

With 17 years of teaching experience in computer science, She has done

her research in the area of software Reengineering.

She completed her M.Phil from Mother Theresa

~ University, Kodaikanal. She did her Undergraduate

in B.Sc(Mathematics) in Jeyaraj annapackiam college

for women, Periyakulam. She started her career as

Lecturer in Computer Science. She never confined

her self to teaching alone. She is also passionate in

motivating the youth especially the student

community to become ,first and foremost,good citizens of the country. She

is also equally interested in imparting creativity, self confidence and helping

tendency among the students. At present,she is working as the Head of the

deparment of MCA,at N.M.S.S.V.N College ,Madurai .She has been

rendering her service there since 1999. She has also guided PG and M.Phil.,
projects of students from various Universities.

13

www.ijerm.com

