International Journal of Engineering Research And Management (IJERM)
ISSN : 2349- 2058, Volume-03, Issue-02, February 2016

Removal of Colluding Parties in Secure Sum Computation
under Distributed Data Mining

Lambodar Jena, Narendra Ku. Kamila, Hemant Ku. Bhuyan

Abstract— Analysis of privacy sensitive data in a
multi-party environment often assumes that the parties
are well-behaved; they abide by the protocols and do not
try to collude. Many of these assumptions fall apart in
real-life applications of PPDDM. Generally, different
kinds of parties have different nature or behavior.
However, their performances may be reflected based on
their nature during computation for common objectives.
Some of them might try to collude with other parties for
exposing the private data of another party. But
self-interested parties try to maximize their own benefit
using their colluding nature. Based on this issue, we
consider theoretical framework to find number of honest
parties. Thus we are interested to solve the above problem
based on privacy protection in distributed data mining
system in which each party maintains own private data
and distribute their data very carefully, otherwise other
party can get more benefits.

Index Terms— Secure sum, distributed data mining, game
theory, privacy preservation, multi-party computation.

I. INTRODUCTION

Privacy issues in a multi-party environment often create
critical situation when parties show well-behaved and abide
by the protocols, but sometimes try to collude with others
data. Many of this kind of situation fall in real-life
applications of Privacy preserving distributed data mining
(PPDDM). Generally, each party performs different tasks
using own nature or behavior in distributed data mining
system. However, their performances may be reflected based
on their nature during computation for common objectives. If
their performances get deviated from original objective, they
may fall into trouble. They get deprived of getting benefits
from computation. Thus nature of parties play important role
in multi-party computation environment.

Considering these issues we have discussed the problem
statement in section 3. Different kind of theoretical
frameworks for different parties such as honest or dishonest
parties have been developed to detect the nature of each party.
Although the secure multiparty computation technique has
already been developed, still we have taken it into
consideration to generate new environment to catch colluding
parties. In this chapter Baye’s privacy model has been

Manuscript received Feb 22,2016

Lambodar Jena, Dept. of Computer Science & Engineering, Gandhi
Engineering College,Bhubaneswar, India

Narendra Ku. Kamila, Dept. of Computer Science & Engineering,
CVRaman College of Engineering,Bhubaneswar, India

Hemant Ku. Bhuyan, Dept. of Computer Science & Engineering,
Bhubaneswar Institute of Technology, Bhubaneswar, India

81

developed with an objective to detect extra information being

added to original data by colluding parties. This extra
information is detected by using prior and posterior mean of
each party’s original data. As our objective is to detect
colluding parties during computation, we have generated two
penalizing policies in such a way that all honest parties can
participate in collaborative computation otherwise system
will terminate the colluding participants. Theoretical
mechanism about payoff of any party has also been developed
based on certain threshold utility to check deviations. Since
our aim is to allow only honest party and reject colluding
parties or encourage the colluding parties to behave honestly
during computation, our framework has been developed
accordingly to ensure that no dishonest parties participate in
multi-party distributed computation.

The rest of the chapter is organized as follows. In section
2, we have discussed the preliminaries and related work of the
proposed model. Section 3 elaborates the problem statement
of proposed work. Section 4 derives distributed multi-party
environment whereas section 5 illustrates secure multi-party
computation under Bayes optimal privacy. In section 6,
penalized secure sum computation (PSSC) algorithm has
been explained whereas section 7 discusses analysis of PSSC
Algorithm. The experimental results are described in section
8 followed by conclusion in section 9.

II. PRELIMINARIES OF GAME THEORY AND
MECHANISM DESIGN

In this section we have briefly described game theory, it’s
mechanism design and also point out some relevant
definitions for necessary research work. For further details,
interested readers can refer to the books by Owen [10] and
Osborne [11].

A. Game planning

A game is an interacting system among different players,
which assumes that (i) the players pursue well-defined
objective and (ii) they take into account their knowledge or
expectations of other players’ behavior.
Definition 2.1(Game planning). A game planning consists
of followings
(a)a finite set P: the set of players,
(b)a nonempty set A;: the set of actions available to
player i, and
(c)a preference relation & on A = XjepA,: the preference
relation of player i.

www.ijerm.com

Removal of Colluding Parties in Secure Sum Computation under Distributed Data Mining

The preference relation ; of player i can be specified by a
utility function u; : A — R (also called a payoff function). For
example, for any actiona € A, b € A, u;(a) > u;(b) whenever a
=; b. The value of such a function is usually referred to as
utility (or payoff). Therefore, the utility of player i depend not
only on the action chosen by itself, but also the actions chosen
by all the other players. Mathematically, for any action profile
a € A, let a; be the action chosen by player i and a_; be the list
ofactions chosen by all the other players except i, the utility of

playeriis ui({a}) = w({a;, ai}).

In any game planning, rational players always try to
maximize their outcomes by choosing the different actions.
Accordingly the utility is generated. Sometimes actions
generated by players that deviate the protocol of the system
for which it is necessary to balance system using equilibrium
conditions. One of the most widely used technique to find the
expected outcome for the overall game was proposed by Nash
[12], and the corresponding outcomes are called Nash
equilibrium. Nash equilibrium states that, if all the players
adhere to an equilibrium condition, no single player can do
any better by deviating from the norm, as long as the other
players do not deviate.

Definition 2.2 (Nash Equilibrium). A Nash equilibrium
(NE) of a game planning is a strategy profile * € A such that
for every player i € P we have

ui({o*i, 6*-i}) = ui({oi, 0°-i})
Therefore, Nash equilibrium defines a set of actions that
captures a steady state of the game in which no player can do
better by unilaterally changing its action (while all other
players do not change their actions).

A more rigorous solution concept is known as the
dominant strategy equilibrium. In a dominant strategy
equilibrium the players do not decide on their strategy based
on others’ strategies; rather they choose the one which seems
to be the best from its set of actions, irrespective of what
others are choosing.

Definition 2.3 (Dominant-strategy Equilibrium). Strategy
o* is a dominant strategy equilibrium if, for all possible
strategies of other agents, ¢* is the best i.e.
u(c%, 0-) 2 ui(o’y, 6-) forall o*#0,
The most important difference between the Nash equilibria
and the dominant strategy equilibria is that the latter

maximizes the utility of the player i independent of the
strategies of other agents.

B. Mechanism Design

Mechanism design is a sub-field of game theory which
studies the art of designing rules of a game to achieve a
specific outcome. This is done by setting up a structure in
which each self-interested player has an incentive to behave
as the designer intends. Mechanism design has been used in
many domains including electronic market design, distributed
scheduling problems, Internet applications and online
auctions. Mas-Colell et al. [13] and Varian [14] provide
through surveys on the topic of mechanism design.

82

Definition 2.4 (Mechanism). A mechanism M consists of
two components - a set of strategy profiles ¢ = (o, . . ., G,)
and an outcome rule o which maps the strategy set ¢ to the set
of outcomes Oi.e.0:0;X ... x 5, = O. 0(c) is the outcome of
the strategy function for strategy ¢. Formally, it is denoted as
M= (oy, ..., Gy, 0(*)).

In many problem settings, algorithmic mechanism design
[15] pays careful attention to the computational aspects of
mechanism design and makes the problem tractable by
introducing approximations without destroying game
theoretic properties of the mechanism. Feigenbaum et al. [16]
has proposed distributed algorithmic mechanism design for a
multi-cost sharing problem. Algorithmic mechanism design
has been researched both in centralized and distributed
computation in the theoretical computer science community
[17] and the multi-agent systems community [18].

III. PROBLEM STATEMENTS

Analysis of privacy sensitive data in a multi-party
environment often assumes that the parties are well-behaved;
they abide by the protocols and do not try to collude. Many of
these assumptions fall apart in real-life applications of
PPDDM. Generally, we know that different kinds of parties
have different nature or behavior. However, their
performances may be reflected based on their nature during
computation for common objectives. For example, Govt.
funded wealth project based on distributed data integration
and analysis of data from different organizations aims at
detecting “valuation of property” patterns from different
organizations for revealing common valuation against those
organizations. But participating parties in a consortium may
not all be ideal. Some of them might try to collude with other
parties for exposing the private data of another party.
Therefore, information integration in multi-party distributed
environments is often an interactive process. It is guided by
the dynamics of cooperation and competition among the
parties. The assumptions of well-behaved parties fail to
translate to real life applications. But self-interested parties
try to maximize their own benefit using their colluding nature.

Based on this issue, we consider theoretical framework to
find number of honest parties who are responsible to take the
govt. project and can manage properly and can complete the
task in stipulated time. It is important for the framework that
“how to find honest parties from different kinds of behaving
parties?”. Although the parties show their similar behavior as
like as honest parties, yet some parties might use their
colluding nature with other parties based on own suitable
situation for generating own maximum profit. Since our aim
is to collect only honest parties for smooth conducting the
project, it is necessary to maintain the privacy policy for the
system. Thus we examine all parties based on their computing
nature in which the party follows the rule is recognized as
honest party otherwise dishonest party in the system. As per
mechanism design for privacy protection and penalizing
policy, each party can be detected as honest or dishonest.
Thus we are interested to solve the above problem based on
privacy protection in distributed data mining system in which
each party maintains own private data and distribute their data
very carefully, otherwise other party can get more benefits.

www.ijerm.com

International Journal of Engineering Research And Management (IJERM)

ISSN :

IV. MECHANISM DESIGN FOR PRIVACY
PROTECTION

Mechanism design [15] provides a way of modifying a
privacy preserving algorithm such that no party has an
incentive to breach the privacy. For distributed privacy
preserving algorithms using SMC, semi-honesty behavior of
participants increase the complexity of computation for the
system. Detection of collusion and subsequent enforcement of
semi-honesty in distributed computation environments can be
achieved by one of the following ways:

+ Centralized Control: In this scheme there is a central
authority that has power to implement the penalty
policy. Whenever a party is identified to have
colluding intentions, the central authority penalizes
the perpetrator. This scheme is relatively easy to
implement. However, it requires global
synchronization that may create a bottleneck and
limit the scalability of a distributed system.

+¢+ Asynchronous Distributed Control: Fortunately, in
distributed data mining system whenever there is a
solution with a miner, there is also a solution without
one. It has been shown [19] that it is possible to
achieve desired behavior without a miner as long as
there is a proper strategy to penalize lack of
compliance. A distributed protocol for penalizing
policy violations requires a distributed control
mechanism. Such an algorithm may penalize
colluding parties in such as way that no party has
incentive to deviate from the protocol and collude,
so that when the protocol terminates, many bad
parties convert to good ones.

To achieve a system with no collusion, the parties in the
system can adopt a punishment strategy to threaten potential
deviators. This approach may not work if the parties perceive
that the possibility of getting caught is minimal or all parties
continue their deviation of protocols for subsequent round of
distributed system. Thus we design a mechanism to penalize
colluding parties based on the following policies [20].

» Policy I: Remove the party from distributed system
because of protocol violation. Although it may work
in some cases, the penalty may be too harsh since
usually the goal of a PPDM application is to have
everyone participate in the process and faithfully
contribute to the data mining process.

» Policy II: Introduce a general penalizing scheme
based on one’s belief about whether there are
violators. This policy tries to identify violators and
also tries to bring down the overall gain of the
colluders in the system. Moreover, this policy tries to
change the colluding behavior of bad parties by
taking few numbers of chances otherwise they may
be terminated from the system. For policy II, the
modified utility function is given by

(o) = ui(o) — w, X k'
where k' (an estimate of k, actual number of dishonest parties)
be the estimate of threat to the system and w,, > 0 is the weight
associated with the penalty. The last term in the equation
accounts for the penalty imposed by the honest parties.
Obviously, such a penalizing scheme works for repeated

83

2349- 2058, Volume-03, Issue-02, February 2016

computation, where bad parties turn good in successive
rounds of the computation. The following steps give a formal
description of the mechanism design process.

Step 1 Choose a data mining protocol.

Step 2 Choose a privacy model P.

Step 3 Find the number of bad parties or violators who
deviates the protocol of the system.

Step 4 Based on the estimate of the number of violators and
the chosen privacy model, compute the utility of
collusion Ugyjysion and the cost of the protocol Ug.

Step 5 Since a good party does not collude by default, its
utility is negative of the cost of the protocol and the
cost of protecting the data privacy is added to the
utility of the data mining results i.e. Ugyoq = ~Ucost +
ULesulr- For a dishonest party, there is also the utility
of collusion and the overall utility is Up,g = Uconusion —
Ucost + Uresult-

Step6 Design a penalty scheme, so that the utility of the bad
party becomes Ubad = UcollusioniUcost+Uresult7PenaltY'
In order for the bad parties turn good, Penalty >
Ucoliusion- Under such a scheme, rational parties with
the intention to collude will not collude in the lack of
any advantage.

Step 7 Apply this amount of penalty for the iterative

computation.

To address this issue, we formulate the above PPDDM
problems for competitive business where each party tries to
maximize its own objectives. We develop algorithmic
mechanism design to modify existing PPDDM protocols to
incorporate penalty for the system so that the protocol reaches
a desired equilibrium, even in the presence of self-interested
participants. We then choose SMC technique for PPDDM to
describe this framework. We show, in the light of the
computational theoretic framework, that the assumption of
semi-honesty in participant behavior is sub-optimal and
propose a penalty based mechanism for a series of secure sum
computations. During series of computations, the colluders
under different penalties (low, medium and high) get removed
from the system phase wise using certain threshold values.
However colluders with high penalties are discarded from the
system after few rounds if don’t behave rationally. None of
the researchers have considered such problem as per the
literature. We also experimentally demonstrate the
performance of the mechanism.

V. SECURE SUM COMPUTATION

Suppose there are n parties, each with a value x;, j =1, 2,

..., n. Itis known that the sum x =
Ej-’=1 x; (to be computed) takes an integer value in the range
[0, N — 1]. The parties are arranged in a ring topology as
defined below.
Definition 5.4 (Ring Network): Given a collection of parties
{Vi, V2, . . ., Vu}, a ring network is a network topology in
which each party connects to exactly two other parties, i.e. ¥ i
=2...0n= 1, Ny(v)) = {Vi-, Vis1 }, Ni(n) = { V-1, Vi }, and Ny(1)
= {Vns VZ}'

The basic idea of secure sum is as follows. Assuming
parties do not collude, party 1 generates a random number R
uniformly distributed in the range [0, N — 1], which is
independent of its local value x1. Then party 1 adds R to its

www.ijerm.com

Removal of Colluding Parties in Secure Sum Computation under Distributed Data Mining

local value x1 and transmits (R + x;) mod N to party 2. In
general, for i = 2, . . ., n, party i performs the following
operation: receive a value z;_; from previous party i — 1, add it
to its own local value x; and compute its modulus N. In other
words,

z; = (zi-; + %) mod N = (R +Ej:-=1 %) mod N, where z; is the
perturbed version of local value x; to be sent to the next party
i+ 1. Party n performs the same step and sends the result z, to
party 1. Then party 1, who knows R, can subtract R from z, to
obtain the actual sum. This sum is then broadcast to all other
parties.

The secure sum computation algorithm expects each party
to perform some local computation. This involves generating
a random number (for the initiator only), one addition, and
one modulo operation. The party may or may not choose to
perform this computation. This choice will define the strategy
of a party for computation. The secure sum computation
algorithm also expects a party to receive a value from its
neighbor and send out the modified value after the local
computation. This party may or may not choose to do so. This
choice can be used to define the strategy for communication.
The total cost incurred by a party is the sum of the costs of
computations and communication performed and therefore
choice of strategies in both these dimensions is an
optimization decision that each party needs to make.

VI. SECURE SUM WITH PENALTY ALGORITHM

Consider a network of n parties where a party is either
honest (good) or colluding (bad). Bad parties collude to
reveal other parties’ information while the good parties follow
the protocol and work out a penalty mechanism to punish
colluding parties to protect the privacy of their data. We can
reasonably assume that honest parties do not care for their
payoffand are interested in protecting the privacy of their data
where cheating parties are only interested in maximizing their
payoffs. Here we describe the penalized secure sum
computation algorithm presented in algorithm 1. The
distributed environment consists of a registration system
which keeps track of the number of honest and dishonest
parties and helps sustaining the operations of the honest
parties. The algorithm comprises of a number of secure sum
computations. The steps of the algorithm are as follows:

Algorithm 1: Penalized secure sum computation (PSSC)

Input of party v;: (i) Size of the network (n), (ii) Complete
ring topology, (iii) Initial type (Party-type = ‘H’ or ‘C’), (iv)
Data vector X;; , (v) Payoff threshold Pt;, (vi) Calculate
personal payoff G; (for ‘H’) or F; (for ‘C’), (vii) Only one
party ‘H’ designated as Initiator and has flag done, (viii) A
registration system (system administrator) that allows honest
parties to register at the beginning of the protocol or between
rounds. It also provides resources to honest parties so that
they can sustain operations.

Output of party v;: Correct vector sum
Initialization:
IF Party-type = ‘H’

Split the local data x; into O(k') random shares
Initialize rand-Shares-List

84

Random shares of v; to other party
ELSE IF Party-type = ‘C’
Initialize collude-List in the system
END IF
IF party is Initiator
Set done to FALSE
Send its data x; after adding a random number and
performing a modulo operation
END IF
END IF
On receiving a message:
IF party is Initiator
Send sum to all parties
Set done to TRUE
ELSE
Proceed to next iteration of the same computation
END IF
IF rand-Shares-List!= NULL
Select next data share from rand-Shares-List
Forward received data and new share to next neighbor
END IF
On completion of every secure sum computation:
IF Party-type = ‘C’
Compute payoff (F;) = Result utility - protocol cost +
collusion utility - threshold utility -
penalty
IF F; <P
Verified = Registration(Pt;);
Registration algorithm
END IF
IF Verified = TRUE
Set Party-type = ‘H’;
END IF
ELSE IF Party-type = ‘H’
Compute payoff (G;) = Result utility - protocol cost -
collusion utility - Pt; - penalty
Solve the problem again to find a new k'
END IF

//call to

Algorithm 2: Registration System (RegSys)

Input:

Threats thresholds (t;, . . . , t,) of all parties who report,
Metrics for Parties (for Party-type = ‘H’) or (for Party-type =
‘C’), A List is total number of reported parties. Listl is only
number of ‘H” and List2 is number of ‘C’. List = List1 + List2.

Output: A verification of honest reporting for each of the m
parties

Steps:

Set Verified to FALSE for each of the m parties.
Each of m parties submits prior-mean of each data
After getting posterior-mean check both mean

IF prior-mean = posterior-mean
Create threats for such party
Count number of threats

IF threats <t;
Continue the computation upto certain thresholds t;
Record number of threats for such parties

www.ijerm.com

International Journal of Engineering Research And Management (IJERM)
ISSN : 2349- 2058, Volume-03, Issue-02, February 2016

Add such parties from List to Listl i.e, Listl = Listl +
parties fall in treats (to, ...t;)
ELSE
Remove the parties from List which belong to t;.1, . .
List2 « List\ {ty;, ..., t} and set

their Verified to TRUE.

Add all dishonest parties to current dishonest list: List2 «—
List2 + parties fall in threats {ty.1, .

st}

Return verified for each of the m parties

ot ie.

Registration of parties: The distributed computing
environment relies on registration system for keeping track of
the number of good and bad parties in the system. During
initialization, all parties can register based on the data mining
protocol. Since registration requires paying the registering
system and the colluding parties would not want to lose a
portion of their payoft in paying for the registration, in such
situation colluding parties may fall in trouble. That is parties
may continue their registration or terminate from the system.
Privacy preserving sum computation To penalize colluding
parties, each good party splits its local data into nk’; for
sharing where mn; > 1. The privacy preserving sum
computation follows the ring topology based secure sum
algorithm, except that every sum computation now requires
max;{nk’; } rounds of sum computation where each good
party randomly sends one of their n;k’; shares. After every
complete sum computation, the cheating parties compute their
payoffs (F;). If F; < 0 for colluding parties, it requests to
register as honest parties for getting an incentive in the next
round.

Registration verification: For any subsequent round of
registration, the registration system verifies the requests sent
to it by the parties as genuine or fake. This is done using a
Vickery auction mechanism [28] described in Algorithm 2.
The registration system can verify which parties are honestly
requesting to change to good due to their payoffs becoming 0
or negative in the current round. The registration system adds
all these parties to the list of honest parties and gives them &
incentive to sustain their operation in subsequent rounds. It
also keeps a note of all winners from all previous rounds
which deter them from coming back again to the registration
system, unless turning good.

Subsequent sum computations: In our context, this implies
that different parties in the system have varying lengths of
data vectors and also the number of splits of data for any one
entry in the vector varies across the good parties. In any
round, if a party does not have any more data, it adds zero to
the sum and sends it forward. If any party checks it’s mean of
own data as (prior-mean = posterior-mean), then it will
continue their subsequent sum computation. The PSSC
protocol terminates after max (length of data vector) rounds
of sum computation.

In this section we make the assumption that once a bad
party turns good, it never turns bad again. This can be
explained using the incentive received by the honest parties
from the registration system. Thus, at the end of any round,
some parties turn from bad to good. For every new round the
good parties solve the problem based on their belief of the
threat and the cost to get a value of k’;. It then uses this new
value of k’; to split its data for this round. When the PSSC
algorithm stops after max (length of data vector), the number

85

of bad parties in the system reduce although they may not be
completely eliminated. A detailed study of the analytical
bounds is provided in the next section.

VII. EXPERIMENTS

In this section we describe the results obtained by
simulating the PSSC algorithm for different network and
collusion sizes.

A. Overview of the Simulation Set-up and datasets

We have used two tools (C++ and Matlab 7.0.1) for our
experiment. We set up a simulation environment comprised
of a network of n parties where a party can either be good or
bad. We have experimented with n-party network based on
ring topology. We consider empirical data in which all parties
participate in online computation for our experiments. But
prior to participation all parties communicate their all original
information to data miner which is called priori data. When
they participate for online computation, there is a chance that
they may not provide all original information for their own
interest compare to a priori information. Then after, colluding
parties can be listed out based on posteriori and priori
information.

B. Experiments on multiparty computation

We assume all parties are honest, but during experiments
the parties are recognized as good or bad as per protocols.
Bad parties try to collude information of other parties or even
own information. The parties in the network have vectors of
different sizes. Since we cover all data as per our series of
computation, all parties might have not provided the data due
to unavailability of data with them. So they provide only zero
as per our protocol for unavailable data. A series of secure
sum computations take place in such a way that no party in the
system knows when the computation is going to stop.
However, for our experiments we have studied the
performance of the algorithm for different rounds which
depend on number of features of data base. The penalty of
each party is determined by protocol at different iterations of
secure sum computation. For every round of secure sum
computation, every party solves the optimization problem
locally and decides on a value of k’; and splits its data into k';
parts. Each round of secure sum requires max{k’; } number of
iterations (assuming n; = 1, ¥ i). The bad parties in the system
form one single colluding group. The threshold utility t; of any
party is selected as a random number between [c;, c,] where c,
and c, are two arbitrary constants for each party.

C. Privacy analysis

As per PSSC algorithm we determine privacy by
measuring the threat to each party’s private data. We have
conducted the experiment based on Bayes optimal model of
privacy for distributed heterogeneous environments. The
Bayes optimal model of privacy uses prior and posterior
distribution to quantify privacy breach where each party’s
data can detect of extra information added by bad party during
computation. We know the prior probability distribution is
forior = P(X = X;) and the posterior probability distribution as
frosterior = P(X = xiB), where B represents the extra

information available to the adversary at the end of

www.ijerm.com

Removal of Colluding Parties in Secure Sum Computation under Distributed Data Mining

computation. Once the data mining process is executed, the
participants can have some extra information which is
determined by p = (fhosterior - fprior)- If p = 0, then there is no
extra information added to party’s data during computation
otherwise p > 0.

Note that the above technique is applied on different
parties where the posterior probabilities of each party can
either be dependent or independent of each other. If parties
share the extra information (B), their posterior distributions
will be pointed out. As per our framework each party can be
detected due to extra information as compare to prior
probability. However mean of each party’s data for both prior
and posterior mean will be different if extra information is
added to original data. Initially, each party provides their
prior mean of data to miner. But during execution of secure
multi-party computation, the posterior mean is varied by
different parties as shown in fig 7.1, 7.2, 7.3, and 7.4. We
consider 50 numbers of parties for computational
experiments. When the number of rounds of computation
increases, the performance of number of bad parties is
detected due to addition of extra information continuously.
During increase of number of rounds of computation,
decrease the numbers of bad parties and also some bad parties
try to convert themselves as good parties whereas few parties
continue their same behavior. Moreover, continuing bad
behaving parties are to be terminated from our system
permanently. Thus we have got 45 parties who are honest
parties out of 50 participating parties as per our framework.

28

O - Posterior mean

* - Prior mean

o 5 10 15 20 25 30 35 40 45 50
Number of parties

Fig 7.1: First round of computation (number of bad parties
-23)

From figure 7.1, it is seen that number of bad parties are 23 in
first round of computation. Mismatch of prior and posterior
mean shows the number of bad parties. In other words,
matching of prior and posterior mean reflects the participation
of honest party and they are not in the system. Similarly, from
figure 7.2, it is observed that the number of bad parties get
reduced after second round of computation. This means that
some bad parties are converted to showing good behavior.
However, figure 7.3 shows, number of bad parties are reduced
drastically to five after third round of computation. In other
words, the number of good behaving parties gets increased
which shows that bad parties are gradually decreased. But
figure 7.4 depicts that after fourth round of computation we
obtain only honest parties based on threshold values as per
our protocol. However, for different data set being provided
by parties the round of computations may be extended to
obtain honest parties by removing / changing the behavior of
colluding parties. Moreover, this situation depends upon the
choice of threshold value for the said protocol.

86

* - Prior mean

O - Posterior mean

N N N
<] N 1N
T

®

Meen of priar and posteriar ceta

o 5 10 15 20 25 30 35 40 45 50
Number of parties

Fig 7.2: Second round of computation (number of bad parties
-12)

28

* - Prior mean O - Posterior mean

N N
» [

N
N

Meen of prior and posterior deta

5 10 15 20 25 30 35 40 45 50
Number of parties

Fig 7.3: Third round of computation (number of bad parties
-5)

27 T BT

* - Prior mean

O - Posterior mean

NCONONNN
S N W &
T T T T

Mean of prior and posterior data

N
o
T

18 L L L L L L L L
0] 5 10 15 20 25 30 35 40 45
Number of parties

Fig 7.4: Fourth round of computation (number of bad parties
-0 i.e., only number of honest parties)

D. Measurement of Utility

After every round of the secure sum protocol (i.e. after
every one of the 50 sum computations), we measure the
following quantities:

« Utility of result (U,): This measures the utility
that any party in the system gets by computing
the correct result.

% Cost for executing basic protocol (C,): This
includes messages sent and computational
expense incurred by all parties (such as addition
and modulo operation) for executing the basic
secure sum protocol. We assume that each
message transmission and computation costs
one unit.

% Utility of collusion (Ur':”j): This is the extra
utility that any dishonest party gets as a result of
collusion with b-1 other colluders.

www.ijerm.com

International Journal of Engineering Research And Management (IJERM)
ISSN : 2349- 2058, Volume-03, Issue-02, February 2016

¢ Penalty (P(b)): This is the amount of penalty that
is necessary for bad parties to turn good applied
in the round in which there are b bad parties
before the application of the penalty.

The total utility of the basic protocol B; is,
Bi = Ur - Cp - ti
The utility of the bad parties is given by,

F,=B;+UY
The utility of the good parties is given by,

Gi — Bi _ Ur'i':'

We do not use the penalty term P® in these expressions
since for the PSSC algorithm the penalty is given in terms of
increased communication and computation cost and is
therefore counted as part of C,.

After every round each party measures the above utilities.
In our experiments since we know how many messages are
exchanged by all parties, we can easily perform the
normalization. In practice, each party can independently do
this normalization without any input from other parties. If the
utility of a bad party falls to 0, it changes to a good party from
the next round onward. But in order to do this it needs to get
an incentive such that its payoff in the next round becomes
better than the current round. The registration system ensures
(using Vickery auctions) that all parties report their correct
utility in order to get the added incentive. The registration
system also keeps track of the cheating parties who try to
falsely report themselves as honest.

E. Results

We have experimented with 50 parties. For each
experiment we have assumed that some of parties in the
network consist of colluding parties. We plot the decreasing
number of colluding parties with successive rounds of secure
sum computation. In fig 7.1, 7.2, 7.3 and 7.4 we have shown
how the number of colluding parties decreases with
successive rounds of secure sum computation. We observe
that the rate of decrease is gradual though not uniform for the
sizes of the network. This is because in every round we
increase the penalty and so a number of parties change from
bad to good. Since in the experiment we do not have any idea
of the thresholds, we have observed in all our experiments
there are certain rounds in which no bad party changes while
in others the change may be by more than one.

CONCLUSION

The work addresses the theoretical formulation of the
privacy preserving distributed data mining problem, referred
as secure sum computation problem. Most of the existing
PPDDM algorithms assume the honest parties participate in
online computation with well behavior. They abide by the
protocols as expected and do not collude the system. But
practically, most of the parties involved in such computations
are self-interested. In this work we formulate the PPDDM
problem as a multiparty computation where each party tries to
maximize its own objective. We consider the multiparty

87

secure sum computation problem for illustrating this
computational theoretic formulation. Using this framework,
we show how the assumption of semi-honesty is sub-optimal
for the traditional secure sum computation algorithm. We
present a corresponding algorithm (PSSC) that penalizes the
colluders in a decentralized fashion and finally converts the
colluders to honest. But in some cases, minimum colluders are
present before last round of computation. We provide
mathematical results for analyzing the performance of the
algorithm. The matching of posterior and prior mean shows
the privacy protecting distributed data mining tasks. Finally,
we have simulated a ring topology and conducted
experiments to verify the analytical results. Our results show
removal of colluding parties in secure sum computation with
penalty algorithm. However this problem can be extended to
generalize different distributed data mining tasks in a privacy
preserving manner and it is an open challenge.

REFERENCES

[1] H. Kunreuther and G. Heal(2003). Interdependent security. Journal
of Risk and Uncertainty, 26(2-3):231-249.

[2] R. Hardin(1971). Collective action as an agreeable n-prisoners’
dilemma. Journal of Behavioral Science, 16:472-481.

[3] M. Kearns and L. Ortiz(2004). Algorithms for interdependent
security games. Advances in Neural Information Processing
Systems.

[4] J. Halpern and V. Teague(2004). Rational secret sharing and
multiparty computation: extended bstract. In Proceedings of
SAC’04, pages 623 — 632, Chicago, IL, USA.

[5] L. Abraham, D. Dolev, R. Gonen, and J. Halpern(2006). Distributed
computing meets game theory: Robust mechanisms for rational
secret sharing and multiparty computation. In Proceedings of
PODC’06, Denver, Colorado, USA.

[6] N. Zhang,W. Zhao, and J. Chen(2005). Performance
Measurements for Privacy Preserving Data Mining. In
Proceedings of PAKDD’05, pages 43—49, Hanoi, Vietnam.

[7]R. Agrawal and E. Terzi(2006). On honesty in sovereign
information sharing. In EDBT’06, pages 240-256, Munich,
Germany.

[8] W. Jiang and C. Clifton(2006). A Secure Distributed Framework
for Achieving kanonymity. The VLDB Journal, 15(4):316-333.

[9] R. Layfield, M. Kantarcioglu, and B. Thuraisingham(2007).
Enforcing honesty in assured information sharing within a
distributed system. In Data and Applications Security XXI, pages
113-128.

[10] Guillermo Owen(1995). Game Theory. Academic Press.

[11] M. Osborne(2004). Game Theory. Oxford University Press.

[12] J. Nash(1950). Equilibrium points in n-person games.
Proceedings of the National Academy of the USA, 36(1):48-49.

[13] A. Mas-Colell, M. Whinston, and J. Green(1995).
Microeconomic theory. Oxford Univ. Press, New York, NY.

[14] H. R. Varian(1995). Economic mechanism design for
computerized agents. In Proceedings of WOEC’95, pages 2-2,
Berkeley, CA, USA, USENIX Association.

[15] N. Nisan and A. Ronen(2001). Algorithmic mechanism design.
Games and Economic Behavior, 35:166-196.

[16] J. Feigenbaum, C. H. Papadimitriou, and S. Shenker(2001).
Sharing the cost of multicast transmissions. J. Comput. Syst. Sci.,
63(1):21-41.

[17] T. Roughgarden and 'E. Tardos(2002). How bad is selfish
routing? J. ACM, 49(2):236-259

[18] D. Parkes(1999). ibundle: An efficient ascending price bundle
auction. In Proceedings of EC’99, pages 148-157.

[19] E. Ben-Porath(2003). Cheap talk in games with incomplete
information. Journal of Economic Theory, 108(1):45-71.

[20] K Das(2009). Privacy Preserving Distributed Data Mining based
on Multi-objective Optimization and Algorithmic Game Theory.
PhD Thesis, University of Maryland, USA.

[21] C.Clifton, M. Kantarcioglu, X. Lin, and M. Zhu(2003). Tools for
Privacy Preserving Distributed Data Mining. ACM SIGKDD
Explorations, 4(2).

www.ijerm.com

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Removal of Colluding Parties in Secure Sum Computation under Distributed Data Mining

B. Schneier(1995). Applied Cryptography. John Wiley & Sons,
2nd edition.

J. Vaidya and C. Clifton(2003). Privacy-Preserving K-Means
Clustering over Vertically Partitioned Data. In Proceedings of
KDD’03, Washington, D.C.

M. Kantarcioglu and C. Clifton(2004). Privacy-preserving
distributed mining of association rules on horizontally
partitioned data. IEEE Transactions on Knowledge and Data
Engineering, 16(9):1026-1037.

A. Machanavajjhala, J. Gehrke, D. Kifer, and M.
Venkitasubramaniam(2006). (-diversity: Privacy beyond
k-anonymity. In Proceedings of ICDE’06, page 24, Atlanta, GA.
A. Evfimevski, J. Gehrke, and R. Srikant(2003). Limiting
privacy breaches in privacy preserving data mining. In
Proceedings of SIGMOD/PODS’03, San Diego, CA.

M. Trottini, S. E. Fienberg, U. E. Makov, and M. M.
Meyer(2004). Additive noise and multiplicative bias as
disclosure limitation, techniques for continuous microdata: A
simulation study. Journal of Computational Methods in Sciences
and Engineering, 4:5-16.

W. Vickery(1961). Counterspeculation, auctions, and
competitive sealed tenders. The Journal of Finance, 16(1):8-37.

88

www.ijerm.com

