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New Approach to Definition of Potential of the Electric
Field Created by Set Distribution in Space of Electric
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Abstract— We study the dependence of the rate of
convergence of the relaxation process on the value of .
We compare the rate of convergence of methods for the
upper and lower relaxation. We calculate the dependence
of the potentials difference on the distance between two
linear charges. The obtained numerical results are
compared with the recognized analytical solution of this
problem. The dependence of the rate of convergence of
the relaxation techniques and the accuracy of the
numerical solution on the step of grid is investigated here.
Algorithms, allowing visualization of the distribution
process of the electric field strength have been created.

Index Terms— potential, electric field, Laplace
equation, Poisson's equation, relaxation method

I. INTRODUCTION

Currently, the capacity to find the electric field at the
location of the unknown source of charges, but in given
electric potential at the boundaries of the field generated by
the fixed wire system, placed in a vacuum and connected to
the batteries, is an urgent task of electrostatics. It is possible to
measure the potential of each of the conductor, but setting the
distribution of electrical charges on the conductors,
depending on their shape, is very difficult. On the other hand,
the received more accurate theoretical results enable to design
and construct the above-mentioned electrostatic systems
optimally. For this purpose, in this paper we propose a new
approach to determining the potential of the electric field
produced by a given distribution of electric charges in the
space, which makes it possible to more accurately determine
the distribution of the electric field.

It is known [1] that the direct method of calculation of the
electric field potential @(x, y,z) in electrostatic problems is

to solve the Laplace equation

o’p ¢ ¢
Ap(x,y,z2)=—+—+—-=0, (1)
ox~ oy~ Oz
and Poisson's equation
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Equations (1) and (2) belong to a class of partial differential
equations of elliptic type. It should be noted that in some cases
the required spatial field is close to the rotation of the field,
especially in the most important for the practice — the area
near the high-voltage current-carrying conductors, having the
greatest practical importance. Therefore, for simplicity of
calculations we shall further consider the special case of

elliptic equations for the field @(x, ), which depends on

_p(xayaz)- 2

two spatial variables. It is obvious that to fully address the
problem of the equation (1), (2) it must be supplemented with
the boundary conditions. There are three types of boundary
conditions:

1) Dirichlet boundary conditions (values of ¢ are given on a
closed curve in the plane (x,)), and possibly some
additional curves situated inside the field); 2) Neumann
boundary conditions (normal derivative of the potential ¢ is
defined on the border ¢ ); 3) mixed boundary value problem
(linear combination of the potential ¢ and its normal
derivative is defined on the border. Dirichlet boundary
conditions are satisfied for the test case.

II. METHODS OF NUMERICAL SOLUTION

We consider the methods of numerical solution of the more
general equation (2), assuming that the solution is searched in
a single square. As a first step of obtaining the numerical
solutions, let us transform the equation (2) into a form
convenient for numerical solution. To do this, in the plane
(x, y) we define a grid of (N + 1)x(N + 1) nodes, covering
the treated area. For simplicity, we choose h grid spacing for
each coordinate axis as uniform and equal. Grid nodes will be
denoted by a pair of indices (i, j), running from 0 to N. In

the chosen notation, the coordinates of the point (7, j) are
equal (x=ih,y = jh). Denoting the values of the
functions ¢ and p at the nodal points, respectively

¢; =0(x;,y;) , p; =p(x;,y;), and using a 3-point
formula [2-4] for approximation, we obtain the difference
approximation of equation (2) of the current-carrying
conductors having the greatest practical importance.
Therefore, for simplicity of calculations we shall consider the
special case of elliptic equations for the field ¢(x, y), which
depends on two spatial variables. It is obvious that to fully
address the problem of the equation [2-4], it is necessary to
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supplement it by the boundary conditions. There are three
types of boundary conditions:

Py TP, — 20, N @i TP — 20,
" "
here ¢, =@(0),¢0,, =@(1).
Equation (3) gives a system of linear equations for the
unknown variables @(i =1, N —1), the matrix of the system

= _pija (3)

of equations is tridiagonal (ie the nonzero elements in the
matrix are only the elements located on the main diagonal and
the two diagonals, above and below the main diagonal). For a
small number of points (for example, N<100) this system of
equations can be solved by direct methods [5-6], or by using
the special direct method developed to solve the "tridiagonal"
systems [7]. However, in practice, with the numerical solution
of elliptic equations, we have to use the girds with a much
larger number of nodes, as typical now computer with the
processor of Pentium IV/3GHz/512Mb that allows
calculating three hours nonlinear problem with 15 million
units. It is therefore advisable to consider only iterative
methods (for example, relaxation techniques), applied for
large sparse matrices.

III. APPLICATION OF RELAXATION METHOD

We rewrite the equation (3), determining it with respect to
variable @, :

1
(e ZI:(pHI,j TO ;0 T T th[j :' “)

Despite the fact that the values of @, ., @, ;, @, ; 1, @; ;11>
included into the right-hand side of (4) are not known, they
can be interpreted as a "refinement" values of @, i through

the values at neighboring points. A method for solving the
equation (4) (Gauss-Seidel method) is as follows:

1) to select a first approximation for the solution of the
equation (4);

2) moving on the grid (for example, left to right), to clarify the
solution in accordance with equation (4). Initial
approximation can come together ("get relaxed") to the exact
solution with multiple repetition of the described process.

In practice, instead of equation (4), it is used a generalized

equation, where in each relaxation step @, ; is replaced by a

linear combination of its old value and an "improved" by the
formula (4)

®)

(0]
b ;= q’b =( 70))@,/ +Z((p,+l,/ FTO; TP TP +h2p;,/)~

To investigate the convergence of this procedure we calculate
the change of functional of energy E defined with the
following formula

_0(2-o0)
h

. (0)

E -E=

1
[Z(%U O P 0 =P )0 ]

From (6) we see that when 0)6]0;2[ energy is increasing

and therefore the iterative process will converge to the
required minimum value. The existence of foreign energy
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minima indicates ill-conditioned linear systems. Parameter ®
determines the speed of convergence of the iterative process -

relaxation rate. When @ <1, it is used the method of

"under-relaxation", with ®>1 - a method of
"over-relaxation".

The algorithm containing the solution to the boundary value
problem can be represented as follows:

1) Setting function p(x, y);

2) Setting a function that implements an iterative procedure,
here E — the number of points where the values of the
function are calculated; @ — parameter that specifies the
method of relaxation; N of Iter-the number of iterations;

p(x, y) - the function name
h el

N
fori, j€0..N
X < ih, jh
Py < p(x,y)
(R 0
iteration(N,w, N _ Iter, p(x,y)) =|forN _Inter € 0...N _ Inter —1,ifN _ Inter # 0
fori,jel..N-1

® )

0, < (=), +— (P + 01+ + 0 HHP;)

P

3) setting a function, which is an exact solution of the
boundary F'(x,y);

4) construction of the boundary problem solutions graphs for
different numbers of iterations (fig.1)

N, =100,/ =0..N,,y, =Ni,

i

N =20,k=0..N,z, =£-
N
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Fig.1. Charts solving boundary value problems for a number
of different iterations:
1—iteration(N,1,150, p),; 2 —iteration(N,1,50, p),;

3—iteration(N,1,10,p),; 4—F(,).

To demonstrate the convergence of the iterative process, you
can plot the energy functional, as a function of the number of
iterations. To do this, the algorithm described above must be
supplemented by the following algorithm.

5) Specifying a function that returns the value of energy
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hel
N

fori, j €0..N

x < ih, jh

Pij < P(x,)

,; <0

fork €0...N _ Inter
iter _e(N,o,N _Iter,p(x,y)) = fori, j€0..N —1

0., < (=00, + 2@, +0 1, 40,070, +0D,,)
e« 0

fori,jel..N

_ 2
o (@, =¢i))
4h

+17p, 0,

E «e

E

6)Calculating the energy values in each step of the relaxation

process (fig.2)
N, =800, B =iter _e(50,1,N,,p), j=0...N,
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Fig. 2. The result of the calculation of energy values at each

step of relaxation process.

When using this method, the following conditions must be
taken into account [1]:

* choosing a good initial approximation reduces the number of
necessary iterations;

* it is necessary to use the optimal value of the relaxation
parameter, which can be evaluated analytically or derived
empirically;

* the process may be more effective if several iterations are
held for some sub-areas of the grid, in which the grid solution
is known weakest, thus saving the cost of relaxation of the
already relaxed part of the solution;

* to conduct calculation for the relatively coarse grid, for
which the amount of computation is small, and then
extrapolate the resulting solution on a fine grid and use these
values as the initial approximation for subsequent iterations.

IV. SOLVING OF THE POISSON EQUATION

We shall demonstrate a relaxation method by the example of
solving boundary value problem of two-dimensional
Poisson's equation 2) fora square area
(0<x <1em,0 £ y < 1em) with known potentials at the
boundaries

(u(x,0) =u(x,1)=0) u(0,y)=u(l,y)=0), assuming
that there is a cell inside of the region
(0,4<x<0,6, 0,4<y<0,6), in which the charge is

distributed uniformly with a density p(p =700V / cm?).

The algorithm containing a conductive solution to the
boundary problem, is as follows:
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1) setting a function that implements an iterative procedure,
here N — number of points in which the values of the
function are calculated; w - parameter that specifies the
method of relaxation; N _of lter — of

iterations; ¢ — the matrix containing the values of the

number

potential on the boundary and initial approximation at internal
nodes; p(x,y) the name of the function that describes the
potential distribution.

hei
N

fori, j€0..N

y <« ih, jh

fori, j€0..N

x <« ih, jh

Py < P(x, )
fork €0..N _ Iter
forjel..N-1
foriel..N-1

iter2(N,o,N _ Iter,p, p(x,)) =

[0} 2
9., < (1-w),; +X(¢M_, FOL TP P TP )
D, ¢
D

2)setting the grid nodes and boundary conditions

N=14,i=0..N,j=0..N,
Je =1..N=Lky=1..N 1,1, =0

Hn = 0, Ho; = 0, Hy,;

3) Setting a function describing the distribution of the charge
density in the cell

f(x,y) =|700if (0,4 < x 0,6)-(0,4 < y <0,6)

Ootherwise.
4) Setting the initial approximation and the number of
iterations

H iy =12,N =100,k =0...N,.
5) Calculation of the potential
B1, =iter2(N,1,2,k, u, p(x,y)),.
6) Mapping the equipotential level (100-th) FRAME =100
(fig. 3).
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Fig. 3. Equipotential surfaces map.
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In order to display the map of the equipotential surfaces after
the n-th iteration, it is sufficient to assign the corresponding
value of the built-in variable FRAME. However, the most
visually dynamic relaxation process is noticed at consecutive
considering change map equipotential surfaces at each
iteration.

V. SOLUTION OF THE LAPLACE EQUATION

Let us consider the solution of the boundary problem of
two-dimensional Laplace equation (1) for a square area

(0 x<1em, 0 < y <lcm) with known potentials at the
boundaries

(@(x,0)=0(x,1) =10V, 9(0,y) = 5,¢(1, y) = 5V)
obtained on a grid consisting of 15x15 knots (fig. 4).

p(x,¥) =0, 1y, =12,
io =10, =10, 1 ; =5, 1y, ; =5,
Bl, =iter2(N,12,k, u, p(x, ),

FRAME =100.
3) The task of the function describing the distribution

<

BIFRANE
Fig. 4. Maps of equipotential lines in the presence of
fractures.

From fig. 4 it is seen that the lines located on the map
equipotential levels are non-smooth (they have fractures in
some break point). Availability of fractures, in its turn, in lines
of equal potential indicates the presence of discontinuities in

5
the derivative of the function V¢@(x, ), describing the
tension of electric field. On the other hand, as we know from
the theory of functions of complex variable, the function
f(x,y), which satisfies the Laplace equation is analytical
[8-10]. Necessary and sufficient condition for analyticity of
the function f'(x,y) is the continuity of its derivatives that
are obviously not met by our obtained numerical solution.
Discovered "defect" of the numerical solutions is associated
with the large gird size, in which the solution of equation is
sought (1). In order to eliminate it you can use two ways:

- find the numerical solution on a grid with a smaller step;

- by using a numerical solution on a grid consisting of 15x15
knots, to find values of the points which do not coincide with
the grid nodes via interpolation procedure.

VI. SPLINE INTERPOLATION

Let us consider the solution of the problem on the spline
interpolation function, which depends on the two variables, in
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Mathcad package. At that, we shall describe only a
supplement to the document for solving the Laplace and
Poisson equations, and therefore further we use the
abovementioned introduced variables, and sequential
numbering of solution steps goes on.

7) Setting vectors that contain coordinates of grid points

X2, =1/N,Y2, =1/N.
8) Creating 7 matrix containing the coordinates of the nodal
points on diagonal of the rectangular grid MXxy = augment
(X2,Y2).

9) Create n of Mz matrix whose (if) th element is the

coordinate z, corresponding to the

X = Mxyi’o and y = Mxyh’l :
M. =Bl, n=rows(M).
10) The calculation of the vector of the spline coefficients of
the nodes of defined Mxy, Mz:
S = cspline(M
11) Setting the interpolation function

fit(x,y) :interp{S,Mxy,Mz,[;ﬂ.

12) Setting the coordinate grid in the nodes where
interpolation values are computed

xl=M, ;0,x2=M_, N, =6]ln,N, =6,ln,

=M ,y2=M,,,,,i2=0..N_,,j2=0..N ,
x2-x1) .

=x1+¥l2,1/j2 =yl+

X y
13) Calculation of the interpolation function values in the grid
nodes

point

M).

Xy

X, (y2-yl) .

FIT,

i2,j2

= fil(X,,,Y,,).

EIT

Fig. 5. Maps of equipotential lines without fractures.

Comparison of the dependences presented in fig. 4 and fig.5
shows that by using spline interpolation, it was possible to
eliminate the shortcomings of the numerical solution
appeared in the presence of fracture lines of equal potential.
In addition, the presence of interpolating function allows you
to calculate the tension and build a map of the lines of force of
the electrostatic field. To do this, the algorithm needs to be
complemented with the following steps.

15) Setting functions that calculates the partial derivatives at
the grid points, the coordinates of which are given in the

vectors X;,),;,and returns a vector of complex numbers in

the form of’
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max(X)—min(X)

Ax
100
Ay max(Y)—min(Y)
100

fori€0...rows(X)—1
forj €0...rows(Y)—1

Vector(X,Y, p(, ) =| . PIX,+A%Y) = p(X, ~Ax.Y)

Ex,
' 2Ax
p(X,,Y, +Ay) - p(X,,Y, - Ay)
Ey, <
’ 2Ay
Ex, ,+iky,

iy

(Ex, ;)" +(Ey,,)

B
16) Setting the coordinate grid, in the nodes of which the
values of tension of the electric field are calculated

N, =2n,N, =2n,i=0..N_,j=0..N

y=1°

2—x1 2—-yl
X1, =x1+<x_x>l-,nj _p1 92200
N.X y
17) Calculation of a vector comprising a complex number of
unit length
B2 =Vector(X1,Y1, fit).

18) Visualization of tension of the electrostatic field (fig.6).

i
2t

B2

Fig. 6. Visualization of tension of the electrostatic field

CONCLUSIONS

1. Developed a new algorithm to allow creating an
animated clip of the relaxation process of numerical
solution of the Laplace equation to the exact
solution, using the spline interpolation map of the
power equipotential lines on each step of iteration.

2. Created an animated clip to allow following the
tension evolution of the electric field in the process
of relaxation.

3. Justified the necessity of the use of the optimum value
of the relaxation parameter, which can be evaluated
analytically or obtained empirically.

4. Demonstrated that the process can be more effective if
you spend a few iterations on certain grid
subdomains in which the grid solution is known
weakest, thus saving the cost of relaxation of the
already relaxed parts of the solutions.

5. Conducted calculation on the relatively coarse grid,
for which the amount of computation is small, and
the resulting solution is then extrapolated to a fine
grid and these values were use as the initial approach
for subsequent iterations.
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