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Significance of Miller Indices on the Gate Threshold
Voltage of NMOS at 90nm Technology

Yogita Dahiya, Bal Krishan

Abstract— According to Moore’s law “the number of
transistors per square inch on integrated circuits had
doubled every year since the integrated -circuits
invented”. In this paper we analyse MOSFET which is
scaled down to 90nm and the threshold voltage with
different crystallographic substrate orientation such as
(100), (110) and (111). The results indicate that
substrate orientation has a significant impact on
threshold voltage. The proposed structure is scaled to
90nm and its threshold voltage and transconductance
both are optimised to one substrate orientation

Index Terms—Threshold Voltage, Transconductance,
Retrograde channel doping, gate oxide thickness.

I. INTRODUCTION

The metal oxide semiconductor field effect transistor
(MOSFET), used in all analog and digital circuits, is
generally used as amplifier and switches. For using
MOSFETs in integrated circuits the dimension of MOSFET
should be scaled. Nowadays the dimensions must be in
nanometres. This technology has been around for many years
and after many years of development the fabrication ways

have also improved.
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Fig 1: Basic structure of MOSFET
There are three main reasons to desire a small MOSFET:

A. Smaller MOSFET has small resistance so large
current can flow.

B. Smaller MOSFET has small gate and therefore lower
gate capacitances.

C. Smaller MOSFETSs can be packed densely resulting in
more transistors in same area.

With increasing the number of transistors on chip the
transistor dimension decrease and the performance is
improved. At dimensions of nanometres there are some
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factors which lead to increase in power dissipation and
degrade the device performance. These factors are threshold
voltage variation, drain induced barrier lowering,
subthreshold swing, and current leakage also known as short
channel effects.

The main objective is to develop the 90nm n-channel
MOSFET (NMOS) for low power application and observe the
effect of orientation or miller indices of silicon substrate on
the gate threshold voltage.

II. MOSFET MODEL

When the channel of the MOSFET is scaled down to
submicron regime, short channel effect will arise appear.
These short channel effects are subthreshold leakage, Drain
Induced Barrier Lowering, Punchthrough Current,
Subthreshold Current, Gate Current. There are several
advance technologies used to supress the short channel effect:

A. Retrograde channel doping: In this model we are
using retrograde channel doping which implies that
“The low surface concentration increases surface
channel mobility by minimizing channel impurity
scattering while the highly doped subsurface region
acts as a barrier against punchthrough”. The
retrograde depth should transition from a low to high
concentration very quickly. This reduces the
threshold voltage and increase mobility.

B. Gate oxide thickness: Scaling gate oxide thickness
also results in improved short channel effects.

C. Threshold voltage: “The voltage required to turn on
the MOSFET is called the threshold voltage.” As the
gate voltage increases above the threshold voltage
the MOSFET starts conducting as the electrons from
substrate, source and drain starts accumulating and
forms the sheet of charge called inversion layer. Due
to the inversion layer electrons stay at higher energy
level which widens the energy band gap. This further
results in increased threshold voltage. In order to
invert the channel, more band bending is required
and voltage greater than classical voltage has to be
applied at the gate terminal. This is called threshold
voltage shift. This shift in threshold voltage is added
to classical threshold voltage.

The gate to source voltage is given by !'"):
Vgs = th + ¢s+ Qs/Cox
Vgs = Vfb + ¢s+ 2(Sossin\Ib ¢s) 2 /Cox
and threshold voltage is,
V1= Vit d:2(e0eiaNs ¢ ' /Cox
Differentiating with respect to surface potential (¢s), we get
dVe/d ¢ = 1+0.5(0eqNy) "> /( §9)*Cox
Putting the condition ¢s-2 ¢, we get
dVe/d ¢ = 1+0.5(e0eqNp) "> /( ¢9)'*Cox
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Therefore, the shift in the threshold voltage is :
avgs ids |:E ¥t 5
dd s

III. FABRICATION STEPS

Fabrication steps comprises the modelling of all process steps
which are necessary for the fabrication of any semiconductor
device. Process steps include various layers of deposition,
lithography, etching, implantation, oxidation and diffusion.
The tool used for the simulation is SILVACO Athena, as a
simulator it provides general capabilities for numerical,

physically-based, two-dimensional simulation of
semiconductor processing [2].
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Fig 2: Basic NMOS fabrication flow chart
Procedure Process Values
1 | Formation of | N-Type P=1.0E14 cm”
initial substrate Substrate Orientation=
<100>
2 | Formation of | Retrograde B=5E12 cm”
P-Type well Well E=300 KeV
3 | Sacrificial oxide | Thermal Thickness=25nm
formation oxidation
4 | Gate oxide| Thermal Thickness=2nm
thickness oxidation (20A)
5 | Vth adjust | lon B=10EI2 cm” ,
implant implantation | E=7 KeV
6 | Polysilicon Thin  film | Etch poly
Silicon deposition crystalline  layer
Deposition Lithography | until 90nm is left
7 | Source/Drain Ion P=5E13 cm’”,
Extension(LDD) | implantation | E=25KeV
8 | Sidewall spacer | Thin  film | Thickness=120nm
formation deposition
9 | Formation of | Ton Ar=2E16,
Source/Drain implantation | E=40KeV
Area
1 | Annealing RTA 1000C/3 sec.
0

Table 1: Process simulation using <100> oriented P-type
substrate given B=>Boron, As=>Arsenic, P=>Phosphorous,
E=>Energy
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IV. PROPOSED DEVICE STRUCTURE

After all the processing steps of the NMOS fabrication, the
results of the fabrication and simulation of 90 nm NMOS can
be viewed in the Tony Plot, as shown below:
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Figure 3: Complete structure of 90 nm NMOS <100>, <110>
and <I11>

As the device is scaled down, the threshold voltage reduces
which means the power dissipation of the device also
decreases. This implies that the device fabricated has low turn
ON voltage and device is meeting the low power requirement.
Therefore, device is having less propagation delay, so can be
used in critical circuits. The parameters like transconductance
and maximum drain current increases and this can be used to
drive the high capacitive load.

At 90nm, at different orientation the threshold voltage and
transconductance also varies with the substrate orientation.
Every semiconductor has polarizable domain which align
themselves in the direction of electric field. For best
alignment with least amount of applied voltage there exist
only one miller indices. Therefor threshold voltage shift in the
crystal orientations (110) and (111) is larger as compared to

100) crystal orientations.

285nm 90nm NMOS device
Parameters NMOS 100 110 111
device
(Default)
Threshold 0.524V | 0.26516 | 0.3291 | 0.3236
Voltage
Maximum | 6xe” A | 12xe” | 12xe” | 12xe”
Drain
current
Trans 3.65xe” | 8.72xe” | 8.2xe” | 8.36 xe™
conductance

Table 2: Comparison of output parameters

CONCLUSION

The threshold voltage, with inversion layer quantization
analytically derived, shows that crystal orientations also have
a significant effect on the threshold voltage and inversion
charge density of MOSFET at nanoscale levels.

Threshold voltage shift in the crystal orientations (110) and
(111) is larger as compared to (100) crystal orientations. This
shows the extent of impact of inversion layer quantization on
the (110) and (111) crystal orientations making them less
useful for the nanoscale MOSFETs.

The value of threshold voltage varies with the orientation of

silicon substrate as stated in above comparison table. The
orientation of <100> of silicon substrate has less threshold
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voltage as compare to <110>, <111> orientation. The
threshold voltage of <100> was found to be 0.265V which is
in agreement with International Technology Roadmap for
Semiconductor (ITRS) value, according to which Vth should
be 0.268V+13% U1,
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