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On Evaluations Some Sepcial Functions with Pade
Approximant in Mupad Interface and Mathematica

D.A.Gismalla

Abstract— The stability convergence for each method
depends on the particular method chosen for that
particular function to be approximated. However , it is
well known that methods for approximations are
classified in ascending order according to their efficiency
and stability to do more better in approximation. These
techniques in that order are PADE , CONTINUED
FRACTION , CHEYBESHV and POWER SERIES .
Despite the fact that Taylor's series are not so worst in
general , many methods are developed for series
acceleration as Euler's or Levin's Transformations. This
means that an experienced numerical analysts can easily
select which method is going to choose directly without
runs into many complicated difficulty . So this the idea
behind this paper is to compared some methods against
the other in such away that the reader can be acquainted
to know which method is better than other.

Hence , this paper first give few commands in MUPAD
INTERFACE and MATHEMATICA to get directly to
approximate functions in a continued fraction or PADE
form . second , a brief description for PADE is given with
one of its important application in finding the root of
equations. The Method is called Halley's algorithm that
compared against Newton's method for finding the roots.
Third , methods that we will consider are Gaussian
quadrure , Pade Approximant , Continued Fraction and
Levin's Transform to be compared and tested with
examples showing which method is applicable and
preferable than the other when they applied to a
particular problem

I. COMMANDS IN MUPAD INTERFACE

In the Matlab Prompt command window the MUPAD
interface will be invoked by just typing mupad followed with
enter as >> mupad to get the prompt mupad as [ . Now, type
in the mupad promp [? followed with the command contfrac
for seeking the syntax and the description command as a help
information for Continued Fraction and then press enter as

[?contfrac
We will get all the information about the command contfrac
for continued fractions.
Example 1 Continued Fraction Approximation
In the command command to express the Taylor's
expansion for exp(x) around x=0 in a continued fraction form

>> contfrac(exp(x), x = 0)
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5+0(x)
>> contfrac(exp(-3*x"2), x = 0)

1+ 0( )
Example 2 Series Approximation
>> ?series
We compute a Laurent expansion around the point x=1
>> g = series(1/(x"2 - 1), x =

R ot WO 0 A G0 V. VA TR
2x-1) 4 16 12 04 o
=
>> series(x(1/3)/(1-x),x)
g 13 g3 L T3 L 1073 L13/3 (16 3—0':!,&'.'9 3\‘3
Example 3 Pade approximation
>> 7pade

Syntax

pade(f, x, <[m, n]>)

pade(f, x = x0, <[m, n]>)

Description

pade(f, ...) computes a Pade approximant of the expression f.
The Pade approximant of order [m, n] around x = x; is a
rational expression

m

r
(X -Xg) (@o+d1(X-Xg)+..+dm(X-Xo) )
i
1+by (X -Xo)*... +hy X -Xo)

approximating f. The parameters p and a, are given by the
leading order term f=aq (x - xo) + O((x - xof° ') of the series
expansion of f around x = x,. The parameters ay, ..., b, are
chosen such that the series expansion of the Pade approximant
coincides with the series expansion of f to the maximal
possible order.

The expansion points infinity,
complexInfinity are not allowed.

If no series expansion of f can be computed, then FAIL is
returned. Note that series must be able to produce a Taylor
series or a Laurent series of £, i.e., an expansion in terms of
integer powers of x - x, must exist.

The Pade approximant is a rational approximation of a series
expansion:

>> f:=cos(x)/(1 +x): P :=pade(f, x, [2, 2])

-infinity, and

ST X +2x +12

X +14x +12
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For most expressions of leading order 0, the series expansion

2 3 '4 '5
of the Pade approximant coincides with the series expansion 1oy + X X 13x 13x + ol XS‘]
. ] ] ) ] L o
of the expression through order m + n: 4 & 24 24

>> § = series(f, x, 6)

II. COMMANDS IN MATHEMATICA
Example 1 (power series approximation in Mathematica)
This gives a power series approximation to (1+x)" for x close to 0, up to terms of order x°.
In[1]:=Series[(1+x)"n,{x,0,3}]
Out[1]=1+n x+1/2(-1+n)nx*+1/6(-2+n(-14n) n x*+O[x]*
Mathematica knows the power series expansions for many mathematical functions.
In[2]:=Series[Exp[-a t] (1+Sin[2 t]),{t,0,4}]
Out[2]=1+(2-a)t+(-2 at+a?/2)t*+(-4/3+a’-a’/6)t*+1/2(32 a-8a°+a*) t*+O[t]°

Example 3 (Pade Approximant in Mathematica)
PadeApproximant[expr, {x,xo, {m,n}}]
gives the Padé approximant to expr about the point x=x,, with numerator order m and denominator order n.
PadeApproximant[expr, {x,xo,n}]
gives the Padé approximant to expr about the point x=x,, of order x.
Order [2/3] Padé approximant for Exp[x]:
In[1]:= PadeApproximant[Exp[x],{x,0,{2,3}}]

1_2x HE

1
Out[1]= 5 R
PadeApproximant can handle functions with poles:
In[2] :=PadeApproximant[Exp[x]/x,{x,0,{2,3}}]

III PADE TABLE FOR PADE APPROXIMANT

A function f{z) is represented by a formal power series:
20
— 2 _ [
fl=c+aztor +- =) ar,
=0
wherec, # 0, by convention. The (m, n)th entry R,, , in the Padé table for f(z) is then given by

Ronl?) = i) _Gottizd 07+ a7
T Qul2) T bt bz +h 4 b

whereP,,(z) and Q,(z) are polynomials of degrees not more than m and n, respectively. The coefficients {a;} and {b,;} can always

be found by considering the expression
m+n

F2)m Y e = fupel)

=0

Qn(2) fapz(2) = Prn(2)

(ul2) (00 toptor 4ot fm+nz’”+") =Pz
and equating coefficients of like powers of z up through m + n. For the coefficients of powers m + 1 to m + n, the right hand side
is 0 and the resulting system of linear equations contains a homogeneous system of n equations in the n + 1 unknowns b,, and
so admits of infinitely many solutions each of which determines a possible Q,. P,, is then easily found by equating the first m
coefficients of the equation above. However, it can be shown that, due to cancellation, the generated rational functions R,, , are
all the same, so that the (7, n)th entry in the Padé table is unique. Alternatively, we may require that b, = 1, thus putting the table
in a standard form.
Although the entries in the Padé table can
always be generated by solving this system of equations, that approach is computationally expensive. More efficient methods
have been devised, including the epsilon algorithm

If the difference of Q,(z)f(z) — P.(z) having the first term with degree n+m+r+1, for r>0, then the rational function R,, ,

occupies (r + 1)* cells in the Padé table, from position (m, n) through position (m+r, n+r), inclusive. The Pade Table is called
normal for the function exp(x) that can be constructed using the MUPAD COMMAND as in the following Table I and it is not
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normal for sin(x)-1 as in Table II The Pade approximant has many application in Physics and Mathematics for there much
connection between it and the Continued Fraction Technique . It has a wide application specially in approximations and solving
a system of non-linear equation as

Halley's algorithm emerged from it to find the roots of a polynomial.

Table I pade(exp(x) ,x,[n,m]) n,m=0(1)3

1 _ 1 2 _ 6
x—1 X-2x+2 ¥ -3x*+6x—6
x+1 _x=2 2{x+3) _ 6ix+4)
x—2 x-4x+6 X -6x*+18x-24
Xy _xt+4x+6 xt+6x+12 3(x*+8x+20)
z 2(x-3) X —6x-12 X -9x2+36x-60
x| _x+6xt+18x+24 | ¥ +9x7+36x+60 | _x +12x°+60x+120
6 2 6(x—4) 3 (x2—8 x +20) X —12x%+60 x—120

Table II pade(sin(x)-1 ,x,[n,m]) n,m=0(1)4

-1 -_1 -1 - 6
x+1 X ex+l Sx +6x +6x+6
x—1 x-1 5x—6 6{dx—35)
Frx+6 X +6x°+6x+30
x—1 x—1 X —6x+6 3(15x% —34x+20)
x 46 Tx -3x°+42x-60
_x Ly X Ly Tx +3x*-60x+60 | _Tx +3x*—60x+60
0 0 3 (x2+20) 3 (22 +20)
Xy _x Ly _Tx +3x7-60x+60 | _Tx +3x7—60x+60
6 6 3 (%2 +20) 3 (%2 +20)

IV. SOLVING KEPLER'S EQUATION USING PADE'S APPROGOXIMANTS
In order to demonstrate the application of the Pade' approximants to a problem revelant to Astronomy , consider Kepler's

equations
E-esin(E)=M , Me (0, 2x)

,ee [0,1]

which yields flx) = x — esin(x)_M and
fld =1—ecoslx), fix) =esn(x)

It has been shown in [ 1 ], pp. 24, the correction &x; derived from the pade approximant of order (1,1) is

T
) =3F f"

f:':.rl::

J=0,1.2,.

)

Eqn.( 1) is called Halley's algorithm for finding a root from a non-linear equation.
Now , Halley's algorithm is similar to Newton's iteration technique given by

Ax;=—-L i=01.2..

Iz

(2)

where & is forward difference opearaier an

Aoy = 2 — x4y

Both the techniques can be used to solve a system of non-linear equations provided
that the initial starting guess solution x5 is given . Now to find the root for Kepler's
Eqn.(3 ) ,We write for Halley's algorithm

Axy —

(x—gsinlx) —WLl1—¢ cosl))

[1—gcos(x)? —=(x—szin (x)—M).s zin ()

0.,1.,2.3

b=

while we write for Newton's Raphson Method Eqn.(4)

(xr — esinlx) — M)

f:':.rl: =

(1 — ecos(x))

i=01,23  (4)
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It is well known that Newton's Method fails whenever the initial starting solution is far from the real exact solution and since
Halley's algorithm has the order of convergence as Newton it may diverge similarly. Now with M=0.6 ,e=0.9 and x,=0.08 , the
result solution for both method is x=1.497589413390409

V. EVALUATION ON SOME SPECIAL FUNCTIONS
Debye function  A.

The idea for stability and efficient approximating result is achieved when a suitable method is applied to a particular
function . Here , for example , We apply Gaussian rule , Pade approximant and then integrate with Gaussian rule , on Debye
function given in [ 2 | ,page (998) which is defined as

fy s—dt=ntiln +1) (5
where n! means factorial n while {{n + 1Jis the Zeta function defined by
() =% 5= L,a-p™* (6)
where ﬂ_z.(;rruduct over all prime numbers )

In [2], the hand book of mathematical functions edited by Milton and Stegun a table
evaluating the Debye function from x=0 to 10 and n=1 to 4 to evaluate the integral

5 gy (7)

i b —1

with no hint describing the methods they used but certainly with a computer of high accuracy for decimal places. We ,evaluate
it for x=0.1 and x=10 while n=1 first and second n=4. The procedure that We adopted is Gaussian Quadratue with five nodes
as in Fig.(1) for its Matlab program. The next approach that We applied when We get advantage of the Pade command in
MUPAD interface to approximate the integrand function in Eqn. ( 7 ) by a rational pade(n,m) and then Gaussian Rule again with
five nodes is applied. The result are collected from command window figures as in Fiq.( 2 ) but some values are obtained when
apply the command Pade first and then We apply Gaussian Rule (( without given the command window here but cited the result
only )) and then all are inserted in Debye function Table III and Table TV.
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function [le]=quassianTable(f,a,b,n)

% Example Integration using Guassian Quatrature rules
% In Matlab command window
% syms X;
% f=inline("x"4 /(exp(x)-1)");
% a=0; b=0.5 ;
% n=5 ; % Guassian-Table is given and n runs from 2 to 5
% [le]=quassianTable(f,a,b,n)

¢=[1.0000000000 0.5555555556 0.3478548451 0.2369268850
1.0000000000 0.8888888889 0.6521451549 0.4786286705
0.0000000000 0.5555555556 0.6521451549 0.5688888889
0.0000000000 0.0000000000 0.3478548451 0.4786286705
0.0000000000 0.0000000000 0.0000000000 0.2369268850];

x=[ 0.5773502692 0.7745966692 0.8611363116 0.9061798459
-0.5773502692 0.0000000000 0.3399810436 0.5384693101
0.0000000000 -0.7745966692 -0.3399810436 0.0000000000
0.0000000000 0.0000000000 -0.8611363116 -0.5384693101
0.0000000000 0.0000000000 0.0000000000 -0.90617984591];

sum=0;
for j=1:n
t=((b-a)*x(j,n-1)+a+b)/2;
sum=sum-+c(j,n-1)*feval(f,t)*(b-a)/2;
end
Te=4*sum /h"4 :

Fig.(1) qaussianTable.m file for qadrature

Symx ; syms X;
a=0; b=10; f=inline('x"4 /(exp(x)-1)");
n=5; a=0; b=0.5 ;
f=inline('x/(exp(x)-1)"); n=5;
[Ie]=quassianTable(f,a,b,n) [Te]=quassianTable(f,a,b,n)
Ie=0.1644 Ie= 0.8138
b=0.5; b=10;

[Te]=quassianTable(f,a,b,n) [Te]=quassianTable(f,a,b,n)
Ie=0.8819 Ie= 0.0097

Fig.(2) Gaussian for Debye function when n=1&4 , x=0.1 and x=10

Table III Evaluation of Debye function when n=1, x=10 and x=1

Apply Gaussian Apply Pade and
X only Gaussian
J"T t ot
—dt J. dt
p €5 —1 p 85 —1
0.1 0.8819 0.8819
10.0 0.1644 0.1644
258
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Table IV Evaluation of Debye function when n=4 , x=0.1 and x=10

Apply Gaussian Apply Pade & Gaussian
X only
X t-!- x l.al
fﬂl e —1 dt fn e —1 de
0.1 0.8138 0.8138
10.0 0.0097 0.0134

The reader should observed that the values for integral in the second column in Table IIT and Table IV are obtained when
n=1 with command Pade approximant as
pade(X/(eXp(X)_ 1 )’ Xa[4’8])

510 (x40 1" + 660 2~ 280 1 + 1160)
£S5 080 2% 17640 - 11680 + 1650000 x° 13305600+ 49806000 1 + 253455200
while for n=4 with command Pade approximant as
pade(x"4/(exp(x)-1) , x ,[4,5]) (®)
30 x° (x*-28 x° + 336 x* —2016 x + 5040)
x° +30 x* £ 420 x° + 5040 x* + 15120 x + 151200
Now ,We apply Gauusian Rule with 5 points to get Ie=0.013 which is the worst result of the four results given in Table III and
Table IV. This certainly due to the accumulation of rounding errors and the precision of our evaluation is not high and Gaussian
Rule can't attained higher accuracy more than 9 digits of places. Also , We observe the order in the command in Eqn.(8) is
Pade[4,5] but the Pade Approximant is of order 8 only. All these will effect the approximation results. Even , here there is
another plenty one must adjust the file quassianTable.m given in Fig.(1 ) for the denominator and numerator are two long to be
submitted as parameters easily. Lastly, both these techniques are very important and each one is suitable for certain
problems, e,g. Pade can be designed for problems having poles or singularity inside the domain or at its end points.
B. The Zeta and Eta Functions
Next , as a typical example of conditional convergent series , the eta function 7{z
.%, (—1)n+t
??I:z:] _L;-T . RE{Z:] =0 {';l:]
=

Which is connected to Riemann's zeta function given by
n(z) = (1-249)ez . z=-1 (0

where Riemann's zeta

@=) = . R@>1 ()

or , alternatively by

{1 _ 2':1—2:'}::{3:] =

[yl
mey = 1:: . Relzd =0,z =
-1 (10

A series which converge for o = 0,i.e.alsointhestrip0 <o =<1
By use of more advanced methods the following relation can be hold
ST
2() = Zn*tsin (=) T -2 —5) (1)
through this relation Eqn.(11) , the function can be computed when « = 0. Alternatively useful representation is given by
1 7= x®
# = — _— 2
¢ls) l'{s:IJ‘D g:_ld.r a1 (127

The formula in Eqn.(12 ) can be transformed to
g—i..‘.s l-u_ _ S:J z.s—].
() = [ 2
c 88 =1
where C is the real axis from = to = , the circle Iz| = =, and again the real axis from = to =. Eqn.(13) implies that when s=0
can be written as

1
o) =—
() 2mi J;

o= dz  (13)

(14)

| =

1 z
Z—:[I—E-I-"']ri;——
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Alternatively , instead of using contour integration ,the divergent series for the Eta function

L r_qh+l
Nzl :Z J i; =R0I=1—-1+1-"(15)

n=1

Hence , using suitable manipulating We find that {0} — E -2 — — :

A very nice discussion can be found in [ 3] from which the zeros and the calculated values for Z(s} as, We cited some from page
113 to be

2(—2m) =0,

1)™B
i(l_?m:]—{,;] o

ZMm
nd?(—2 J—EB”‘QH‘]jrr 16
andZl=tm) == o (16

where B, , m=1,2,3, and -2 -4 -6... are
trivial zeros of zeta function .

From[3], We cited some numerical values for the zeta functions as in Table V exactly as they are and then We evaluate these
values again to be compared with our results. We apply Levin's Transform in [ 6] with its program MATLAB as in Fiq.( 4.7
) ,pp27 . In fact We evaluate the Eta function given by Eqn.( 9 ) and simultaneously from the result of the program the Zeta
function is evaluated by Eqn.(10) . Table VI shows the values of Eta and Zeta where the number of terms is 12 and the number
of decimal places for accuracy is at least 10. Observes that when s=-1
Lenin's Transform converge 0.25 which is the value for Eta function when s=-1 which gives the value for Zeta function

¢(s) =-1/12and . 2(0) =-1/2
Table V Zeta values We cited from [3]

s i(s)
5/2 1.3414872573
32 2.6123753487
4/3 3.6009377506
1/2 -1.4603545088
1/3 -0.9733602458
0 -0.5
-1/2 -0.2078862250
-1 -0.083333333

Table VI Values We Computed using Levin for Eta &Zeta

no| s L(s) n(z)

12 | 5/2 | 1.341487257250917 0.867199889012184

12 | 32 2.612375348685454 0.765147024625398

12 | 4/3 3.600937750458803 0.742871563883650

12 | 1/2 | -1.460354508809559 0.604898643421619

12 | 173 -0.973360248350768 0.571752833825269
0 -0.5 0.5

12 | -1/2 | -0.207886224977360 0.380104812609694
-1 -1/12 0.25
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function LevinTranfSumx(f,n ,a0 ,x)

% Levin Transform for Series Summation with each term having variable x
% This Technique is a series Technique for which the integral is expressed
% as a series FIRST and then LEVIN is applied. The general term for the
% series can be expressed as an inline function or a handle object with
% the initial term submitted to the program in advanced to generate the
% other terms with the number of terms n to be taken for the sum.
% The function f in LevinTranfSum(f,n ,a0 ,x) is a ratio to generate other terms .
% In Matlab command window
% syms s;
% f=inline(' (-1)"s*(2*s-1)/(2*s*(2*s+1))");
% al=x ;
% n=5;
% LevinTranfSumx(f,n ,a0 ,x)
global UT ;
for k=1:n
[S, UT]=LevinTransformx(fk ,a0 ,x);
F(k)=UT;
end
disp(' The Sum of the Series having 2*n+2 terms')
disp([ S']);
disp(* The Sum of the Series using LEVIN TRANSFORM using 2* n+2 terms')
disp([ F']);
function [ S, UT]=LevinTransformx(f, k ,a0 ,x)
a(1)=a0 ;
S(D=a(l);
C()=1;
TotalSumDen(1)=1;
TotalSumNum(1)=1;
for j=1:2%k+1
a(j+1)=feval(f,))*x"2*a(j);
S(+1)=S(j)+a(+1);
C(+D=(2*k+2-)*C()/();
TotalSumDen(j+1)=TotalSumDen(j) +
-DN*CG+D*G+DN2*k-1)*S(G+1)/aG+1);
TotalSumNum(j+1)=TotalSumNum(j) + (-1)N*C(G+1)*(+1)"(2*k-1)/a(+1);
end
UT= TotalSumDen(2*k+2)/TotalSumNum(2*k+2);

Fig.(3) File LevinTranfSum.m for series with terms having variable x

VI. TRANSFORM INTEGRALS TO CONTIUED FRACTION
If, we consider the integral

Lo pm-1
I(n,m]=s:fnl+xn dx (17 )
and after integrating with x=1 , the value s will be
1 1
§=—— + +- (18)

“m m+n m+2n m+3m
It can be shown from theorem( 2.1 ) in [ 5 ] the Continued Fraction is

1 m?
S—m+r1| m 1 ) {19
-+ EEEE
A .

n + ec
Further , if We again consider the integral in Eqn.(17) when m=1 and n=2 ,its value actually i when x=1 and the integral for

general x is of the form in Eqn.(20)
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x 1
2 =5 = - 2
21) =s=[ dx (20)
and it can be represented as C.F in Eqn.(21) such as
1 1%yt 3yt
Nl =————-—-—.....

x4+ 32l L5 -3x14
(2n — 3)%7 21

@n-D-@n-x Y
Now if We put x=1 ,We getasin[ 5], the C.F. for i to be
T 1 1% 37 32 (2rn-—3)°
—E—— .. (22)
4 14+2+2+2+ 2
Hence , the computed value of the integral in Eqn.(17) for m=n=1 is in Table VII having the exact value 1(1,1)=log(2) while
the computed value of the integral in Eqn.(17) for m= 1 and n=2 is in Table VII having the exact value 1(2,1)= ;

The value of the integral in Eqn.(17) is computed with Levin's Transform , Gaussian Rule and the continued fraction Technique
in
[5] in Fig.(4 ) .The file We called for C.F. is forward recursion algorithm is forwrec3.m in [5] which uses 1000 terms and
having very low accuracy compared to the file quassianTable.m for Gaussian Rule or LevinTranfSum.m for Levin's Transform
accelerating the series . All these Commands Window are in one figure Fig.(4) in appendix.

The reader should observed compute the series in Eqn.(20) for I(2,1) is given by

@

(._-U il g In-l

@D =) g

n=1

b4
Mz21) = 2 Jorx=1; (23
For such a series with terms having a variable x , We apply LevinTranfSumx.m as
that require to submit an inline function f
having the ratio of terms and the variable x alone or submit a function handle with two variables the running indexing j for the

terms and x. Here We prefer the earlier choose.

See Fig.(3) for its Matlab program.

Table VII Shows values for the three methods considered to compute I(1,1) in Eqn.(19) and

Eqn.(21)
Methods C.F. Gaussian Levin
values 1.44165666325524 | 0.693147157814239 | 0.693147180559931
9
Errorlog(2) — | 4992509988754¢-04 2.274570631843886e-08 1.432187701766452e-1
value 4
values 0.78289822588963 | 0.785398159934493 | (0.785398163397433
8
Error “value | 0-00249993750781 | 3.462955255884026e-09 | 1532107773982716e-14
4 0

VII. COMPUTIONAL REMARK
The Error given in Table VII shows clearly that the continued fraction C.F. technique having the worst value for the
approximation ,even We have used about 1000 terms, due to growth of the nominator largely specially when We compute ; .

This one of the disadvantage of C.F. whenever the nominator accumulates to large number or the denominator approaches a
very small number the precision will be lost and accumulated. So if one uses C.F. he must see the growth for both the nominator
and the denominator first . However , it is known it is useful for the evaluations of Bessel's functions of first kind and the second
kind. Gaussian rule ,it is well known of its great advantages and easy to apply and whenever the number of points increased the
number of decimals in accuracy increased . The algorithm Lenin's Transform and other accelerating series like Euler's
Transform are efficient and can compute to a very high accuracy, e.g .see the Errori—T — value computed by levin's in Table

VIL
However ,despite that it sometimes fails , I do astonish for this technique to compute
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@

_qyn+1
r;l{—l]=Z{ﬂ_—_]1=1—2+3—4-+5...{2=1‘].

n=1

The partial sum of this series is 15,7} is S;=a,=1 and 5, = (—1)"n,

n=1,2.3..
Eqn.(24)shows it can't be summed just as 7 0]

Levin's gives 7{—1) = i = o(-1) = _1%

but levin's does it for #{—1) which gives an
influence for suggestion to be more

investigated and analyzed instantly within the commutation from the beginning ((for from the first run it give the result = ;.))

APPENDIX
a0=1; n=1000;
f=inline (' (-1)*1/(14+1/s)"'); for k=1:n
n=5; g(k)=1;
LevinTranfSum(f,n ,a0) f(k)=(1+k-1)"2;
format long end

LevinTranfSum(£f,n ,a0)

[y

.000000000000000
.500000000000000
.833333333333333
.583333333333333
.783333333333333
.616666666666666
.759523809523809
.634523809523809
.745634920634921
.645634920634921
.736544011544012
.653210678210678

(=Moo NeNoNeNoNeNol

using 2* n+2 terms
0.693452380952381
0.693146595528455
0.693147179505577
0.693147180568758
0.693147180559931

log(2)-0.693147180559931

ans = 1.432187701766452e-14

The Sum of the Series having 2*n+2 terms

[y , k] = forwrec3(f , g ,n , 1le-10)

0.441656663255249
1000

y
k

log(2)-1/1.441656663255249

ans = -4.992509988754890e-04

The Sum of the Series using LEVIN TRANSFORM

syms x;
f=inline ('l /(14x)');

n=5;

a=0; b=1;
[Ie]=quassianTable(f,a,b,n)

Ie = 0.693147157814239
log(2)- 0.693147157814239

ans = 2.274570631843886e-08

Fig.(4) . Command Windows files LevinTranfSum.m , forwrec3.m and quassianTable.m to
evaluate the integral in Eqn.(15)

ACNOWLEDGEMENT
I would like to thank Taif University ,Saudi Arabia to be
appointed Professor in the Department of Mathematics
,Riana College , during 2012-2016 for which some
accomplished research papers are published

REFERNCES
[1]Josef Kallrath Basf OSEF KALLRATH On Rational
Function Techniques and Pade Approximants , An

Overview ,AG ZX/ZC — CI13, D-67056 Ludwigshafen,
GERMANY e-mail: kallrath@zx.basf-ag.de September
16,2002

[2] Abramowitz,M ,and Stegun ,I.A. 1964 , Handbook of
Mathematical Functions , Applied Mathematics Series ,
Volum 55 (Dover Publication New York )

[3] Clark-Erik Frberg , Numerical Mathematics ,Theory and
Computer Application.  The Benjamin /Cummings
Publishing Company ,Inc , 1985.

[4]D.A.Gismalla , Lynne D. Jenkins and A.M.Cohen
Acceleration of Convergence of Series for Certain
Multiple Integrals , 1.J.C.M,Vol. 24, pp 55-68, 1987.

[5] D.A.Gismalla, Survey on Transformations for Infinite
Series to Continued Fractions with Matlab Program for
Computing some. International Journal Innovations for

263

Engineering Research and Management . vol.3, May 2016 ,

India.

[6]D.A.GISMALLA , Computer Oriented Programs on
Multi-Dimensional Numerical Integration , International
Journal of Engineering and Technical Research (IJETR)
ISSN: 2321-0869, Volume-2, Issue-2, February 2014

www.ijerm.com



