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Artificial Neural Network Modeling of the Groundwater
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Abstract— Artificial neural networks (ANNs) model are widely
used in water resources applications to predict and forecast
water resources’ variables. The objective of this study is to
investigate the abilities of an artificial neural networks’ model
to predict the total dissolved solid (TDS) and electrical
conductivity (EC). Water quality variables such as pH, calcium
(Ca’™), magnesium (Mg’),sodium (Na"), potassium (K,
bicarbonate (HCO3-), chloride (CI), nitrate (NO;) and sulfate
(SOy4) were used as the input data to obtain the output of the
neural network(TDS and EC). Performance of the ANN models
was evaluated using correlation coefficient (R), Nash-Sutcliffe
coefficient of efficiency (NASH), root mean square error
(RMS), Normalised Root Mean Square Error (NRMSE) and
Mean absolute error (MAE). computed from the measured and
model computed values of the dependent variables.The results
of this study reveal that the ANN- MLP (9, 9, 1) model gives the
best estimates for the TDS prediction. The results of neural
network modeling to predict electrical conductivity (EC)
indicate that the ANN- MLP (9, 12, 1) model showed better
predictive ability in the determination of EC. The identified
ANN models can be used as tools for the computation of
groundwater quality parameters in Zahrez basin.

Key words— Artificial neural network (ANN), Groundwater
Multilayer perceptron, Zahrez basin

I. INTRODUCTION

Zahrez basin is located in the High Plateaus of the north
Algeria, characterized by a semi-arid climate where annual
rainfall is highly irregular. Because of the scarcity of surface
water, groundwater is a major source of water supply in
different cities around the study area. Groundwater
resources in the study area occur in four main
hydrogeological units: (1) Mioplioquaternary consists of
conglomerate and clay, (2) Turonian made up of fractured
limestone, (3) Albian, and (4) Barremian aquifer made up of
sandstone [1]. The mioplioquaternary aquifer is a source of
fresh water for the city of Djelfa with a population of
1,491,370 inhabitants. Groundwater quality is affected by a
wide range of natural and anthropogenic factors. Natural
processes (hydrological, physical, and chemical) may affect
the characteristics and concentration of chemical elements in
groundwater [2-3]. In addition, there are also anthropogenic
impacts due to urbanization, industrial and agricultural
activities in the basin. Assessment of the groundwater quality
as well as development of management strategies for the
protection of water resources is one of the essential objectives
for the future development of a country, especially when the
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rising demand for clean drinking water is considered [4-5].
Artificial neural networks (ANNs) models have been
successfully used in hydrological processes, water resources,
water quality prediction [6-9]. Niroobakhsh et al. [8] used
two ANN networks, multilayer perceptron (MLP) and radial
basis function (RBF) to compute the total dissolved solid
(TDS) concentrations for the Jajrood River of Iran. In their
study, they found that MLP and RBF are able to simulate
water quality variables of Jajrood River with more than 90%
accuracy. Singh et al. [8] computed dissolved oxygen (DO)
and biochemical oxygen demand (BOD) levels in the Gomti
River in India using three-layer feed forward neural networks
with back propagation learning. The coefficient of
determination for modeled values and observed DO values
were 0.70, 0.74, and 0.76 for the training, validation and test
sets, respectively. The main objective of this study is to
construct an artificial neural network (ANN) model for the
prediction of total dissolved solids (TDS) and electrical
conductivity (EC) in Zahrez basin and demonstrate its
application to complex water quality data as how it can
improve the interpretation of the results. Here, we have
investigated the possibility of training ANN models
correlating the primary water quality variables (independent)
with their secondary attribute (dependent variable). The TDS
and EC of the groundwater were taken as the dependent
variables here and set of other parameters constituted the
independent variables.

II. MATERIALS AND METHODS

A. Study area

The Zahrez basin (Fig.1) is one of the endorheic basins of the
vast steppes region in the central northern part of Algeria.
The Zahrez hydrological basin covers approximately 8,989
km®. Topography of the area is relatively flat with an
elevation ranging from 900 to 1330 meters above mean sea
level [10]. The catchment lies between longitudes 2° 15 to 4°
08’E and latitudes 34°35’to35°30’N. The area is
characterized by a semi-arid climate, typically
Mediterranean, with an irregular annual rainfall. The mean
annual rainfall and potential evapotranspiration are 250 and
1380 mm, respectively, exceeding rainfall for most of the
year. The mean monthly temperature varies between 3°C and
25°C. The precipitation period in a typical year is between
October and March and the dry period can extend from April
to September [1]. The ephemeral rivers of the region, locally
called ““wadi’’, have an intermittent flow regime, because the
dry season is typically very long (6—8 months) every year.
The main wadis in this basin are the Melah and Hadjia rivers
which receive many important flow tributaries. The drainage
density of the area ranges between 1.4 and 1.8 km/km? [10].
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B.  Water quality data set

A tot al of 47 water samples groundwater samples were
collected during sampling campaigns carried out in October
2012 at wells in various parts of the study area (Fig. 1).
Electrical conductivity (EC), temperature and pH were
measured in the field, using the portable Orion EC and pH
meters. Water samples were filtered through a 0.45 um
cellulose membrane and collected in 100 ml polyethylene
bottles for major and minor element analysis which have
been done at the National Agency for Water Resources
(ANRH). Cations (Ca*', Mg*", Na', K) were analyzed by
atomic absorption spectrometry, anions (CI, SO,* and NOy)
by high performance ionic liquid chromatography (HPILC).
Bicarbonates (HCO5') were determined by acid-base titration
method [11].

C. Data processing

Before the network training, the original data were
normalized in accordance with the requirements of the BP
algorithm. The values applied in the input and output layers
were normalized by the following formula in the range of
(0-1).

_ Xi X

i max

norm (1)

min

i X

Where xi, x;™", x;™, and x;""™ denote, respectively, values
of input (output) variables i, minimum value of input (output)
variable, maximum value of input (output) variable and the
normalized value of i.

The de-normalized value of the ANN was computed using:

Y=Yt Vo Vo Vo) @

Where Vi, YminYmax and Yuom are, respectively, real valued
output variable, minimum and maximum values of real-
valued output and the normalized output value from the
neural-ANN model.

The proportion of ANN training set from the available data
ranged generally from 25% to 80%.The proportion of ANN
testing set from the available data is about 15 to 20% and
the proportion of the validation data set is a bout (5 to 15%)
[12].

D.  Artificial neural networks modeling (ANNs)

ANN models have been used successfully to model complex
nonlinear input—output relationships particularly in situations
where the explicit form of the relation between the variables
involved is unknown [13-14]. As a nonlinear statistical
technique, ANNSs can be used to solve problems that cannot
be addressed by traditional approaches [15]. The ANN
architecture is composed of an input layer, a certain number
of hidden layers and an output layer in forward connections.
The input layer introduces data into the model and calculates
the weighted sum of the input(s). The hidden layer or layers
processes data, and the output layer produce the results of the
ANN model. Each layer is com-posed of one or more basic
element(s) called an artificial neuron or a node, which is
connected to a network by a weight factor. A feed- forward
neural network is commonly used for predicting and
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forecasting water quality variables[16-18]. The major steps
for development of ANN models include defining the
suitable model inputs, specifying network type,
pre-processing and partitioning of the available data;
determining network architecture; defining model
performance criteria; training (optimization of connection
weights); and validating the model [19-21].

E.  Multi-layer perceptron (MLP)

A multilayer feed-forward network or multi-layer
perceptrons (MLP), originally proposed by Rumelhart and
McClelland [22], are the most commonly used and
well-researched class of ANNs [23]. A MLP consists of an
input layer, which receives the values of the input variables,
an output layer, which provides the model output, and one or
more hidden layers. Nodes in each layer are interconnected
through weighted acyclic arcs from each preceding layer to
the following, without lateral or feedback connections [24].

F. Activation function

The activation (transfer) function determines the response of
a node to the total input signal it receives. The most
commonly used activation function, named logistic sig-
moid-type function was used in this study for the hidden
layer [25-26]. However, a linear-type activation function
was used for the output layer, as suggested by Maier and
Dandy [21] and Rumelhart et al. [27]. The sigmoid function
is a bounded, monotonic, non-decreasing function that
provides a graded, non-linear response [28], whereas a
linear-transfer function calculates a neuron’s output by
simply returning the value passed to it. The mathematical
expressions for these two functions are as follows:

Linear function: f(n) =n

3)

Logistic sigmoid function: f(n) = 1 4
1+ e(-n)

Another sigmoid function is the tan-sigmoid transfer
function, defined by

Tan sigmoid function:
— e(—n)

fn) = X

1+ e(-n)

®)

G. Modeling performance criteria

To determine the performance of each of the selected
network model, five different criteria were used: the root
mean square error (RMSE, the normalized Root Mean
Square Error (NRMSE), the Nash-Sutcliffe Efficiency Index
(NASH), and the mean absolute absolute error (MAE), and
the correlation coefficient (R). The five indices are
computed according to the following equations:

a) Root Mean Square Error is RMSE:
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b) Normalized Root Mean Square Error (NRMSE):
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where, y; and x; are actual and obtained values of output, and

N is the number of values.

y; is the mean estimation from the observed records for site i,
Vi is the mean estimation obtained from the model for site

i, and ¥ is the mean of the mean estimation from the
observed records of the n sites.

Where, yi and xi are actual and obtained values of output, y is
the mean of actual output values.

III. RESULTS AND DISCUSSION

A. Descriptive statistics

The details of descriptive statistics for groundwater quality
parameter s are given in Table 1. Recorded groundwater pH
varies from 7.6 to 10, indicating that the groundwater
samples are mainly alkaline. The TDS values in the
groundwater ranged from 300 to 4,012 mg/l, with a mean
value of 1546 mg/l. TDS in the study area varying over two
orders of magnitude from fresh (TDS < 1000 mg/l) to
brackish (1,000 mg/l < TDS < 10,000 mg/l). The most
dominant major cations are Na" and Ca®*, while major anions
are dominated by CI followed by SO,”. Also, Table 1 reflects
a moderate to high variability (standard deviation and
coefficient of variation) of samples parameters. The highest
variability was for CO,%, followed by K", and Na" with a
coefficient of variation greater than 1.0, reflecting the spatial
variation of groundwater quality in the Zahrez basin.

B. Artificial neural network (ANN)

In order to construct an artificial neural network ANN model
for the total dissolved solids (TDS) and electrical
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conductivity (EC), the available 47 measured data set
including Ca*", HCO5, Mg®", Na', K*, CI', NO;™ and SO,*;
and pH variables were divided into three phases : 75%,
15% and 10 % of data set were chosen for training, testing,
and validation phase, respectively. Different ANN models
were constructed and tested in order to determine the
optimum number of nodes in the hidden layer and transfer
functions. Selection of an appropriate number of nodes in
the hidden layer is very important aspect as a larger number
of these may result in over-fitting, while a smaller number of
nodes may not capture the information adequately. The
suitable number of nodes (neurons) in hidden layers ranges
from (2n'2+m)to(2n+1), to (2n + 1), where n is the
number of input nodes and m is the number of output nodes
[29]. To confirm the optimum structure of the AN N model,
several models were constructed. The results are provided in
Table 2 and 3.

C. Total dissolved solids (TDS) models

The architecture of the best ANN models for the total
dissolved solids (TDS) and electrical conductivity (EC) in
the Zahrez groundwater is presented in Table 2. The best
ANN model for the TDS is composed of one input layer
with nine input variables, one hidden layer with nine nodes
and one output layer with one output variable. It can be seen
from Table 2 that the MLP (9,9,1) model provided a best fit
model for the training and test data sets. The respective
values of RMSE, NRMSE, and MAE for the two data sets
are 99.10, 0.024 and 81.08 for training, and 140.42, 0.034
and 111.47 for testing. The correlation coefficients between
the observed and predicted TDS values were 0.995, 0.976
and 0.984 for the training, test and validation sets,
respectively. The NASH values corresponding to the
training and testing sets are 0.95 and 0.94, respectively,
suggesting good fit of the model to the data set. The
comparison of the measured and predicted TDS values for
the training, testing, and validation data sets are shown in
Fig. 2 and 3. The correlation coefficients of training, testing,
and validation were 0.995, 0.976, and 0.984, respectively,
suggesting good fit of the model to the data set.
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Fig. 1. Location map and geological formations of the Zahrez

Table 1. Descriptive statistics of groundwater quality parameters measured in the study area

Parameter Min Max Mean Variance SD CvV
EC (uS/ cm) 450 7780 2829 3155617 1776.5  0.63
Ca (mg/1) 229 377  166.2 9167.2 9575 0.58
Mg (mg/l) 20 149 68.2 1355.2 36.81 0.54
Na (mg/1) 17.6 9339 2282 595059 243.94 1.07
K (mg/l) 3.5 60.8 11.2 141.9 11.91 1.07
Cl (mg/l) 40 1712 506.7 178691  422.72  0.83
HCO; (mg/1) 0 275 83.3 4496.5 67.06 0.8
NO; (mg/l) 1 93.5 38.9 898.4 2997  0.77
pH 7.6 10 8.4 04 0.6 0.07
CO; (mg/l) 0 24 4.7 51.3 7.16 1.51
TDS (mg/l) 300 4012 1546 914242  956.16  0.62
SO, (mg/l) 32 1250 411.1 90580.5 30097 0.73
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ANN R Nash RMSE
Structure

Training  Test validation Training  Test validation Training Test validation
MLP 9-8-1  0.988 0.958  0.987 0.98 0.89 0.96 157.40 216.92 243.51
MLP 9-12-1 0.995 0971  0.987 0.99 0.92 0.94 105.68 177.73 296.11
MLP 9-5-1  0.990 0.964  0.961 0.98 0.89 0.89 143.06 218.90 415.67
MLP 9-13-1 0.990 0976  0.956 0.98 0.91 0.87 143.51 197.79 434.12
MLP 9-9-1  0.995 0976  0.984 0.99 0.95 0.94 99.10 140.42 289.77
MLP 9-6-1  0.987 0.960  0.998 0.97 0.86 0.95 164.76 239.43 281.85
MLP 9-3-1  0.985 0.958  0.991 0.97 0.89 0.96 174341  217.907 233.903
MLP 9-4-1  0.987 0.959  0.988 0.97 0.89 0.95 160.145  216.306 272.020
MLP 9-7-1  0.994 0.967  0.992 0.99 0.91 0.98 106.85 198.73 192.68
MLP 9-10-1 0.989 0.958  0.992 0.98 0.86 0.97 151.26 244.59 206.28
MLP9-11-1 0.995 0.968  0.956 0.99 0.84 0.88 105.42 257.32 416.45

Table 3. Performance parameters of the artificial neural network for predicting the TDS concentration, in training, testing, and
validation phase (NRMSE, RMSEr and MAE)

ANN NRMSE RMSEr MAE
Structure
Training Test validation Training  Test validation Training Test validation

MLP 9-8-1  0.038 0.053 0.059 0.120 0.117  0.185 129.55 127.66 163.79
MLP 9-12-1 0.026 0.043 0.072 0.163 0.132  0.297 87.96 135.74 223.28
MLP9-5-1  0.035 0.053 0.101 0.203 0.182  0.470 122.80  146.14 359.83
MLP 9-13-1 0.035 0.048 0.106 0.200 0.159  0.465 123.88 139.68 379.24
MLP9-9-1  0.024 0.034 0.071 0.131 0.100  0.317 81.08 111.47 211.77
MLP 9-6-1  0.040 0.058 0.069 0.136 0.128  0.231 139.92 135.12 247.47
MLP 9-3-1  0.043 0.053 0.057 0.135 0.121  0.260 14546  131.61 160.64
MLP 9-4-1  0.039 0.053 0.066 0.144 0.122  0.259 129.27  120.79 194.47
MLP 9-7-1  0.026 0.048 0.047 0.114 0.122  0.151 82.96 137.50 158.78
MLP 9-10-1 0.037 0.060 0.050 0.13 0.14 0.20 124.81 151.32 179.36
MLP9-11-1 0.026 0.063 0.102 0.11 0.17 0.37 85.97 183.38 319.05

Table 4. Performance parameters of the artificial neural network for predicting the EC concentration, in training, testing,
and validation phase (R, Nash and RMSE).

ANN R Nash RMSE
Structure

Training Test validation Training Test  validation Training Test validation
MLP 9-8-1 0.992 0.969  0.957 0.99 093 094 231.56 305.15 624.02
MLP 9-12-1 0.995 0.966  0.982 0.99 094 096 184.47 297.39 497.78
MLP 9-5-1 0.989 0.959  0.841 0.99 094 0.78 263.59 289.50 1175.03
MLP 9-13-1 0.974 0.995  0.945 0.97 099 091 405.86 112.65 738.04
MLP 9-9-1 0.993 0974  0.947 0.99 096  0.92 218.53 236.98 696.49
MLP 9-6-1 0.994 0.982  1.000 0.99 097 0.96 199.28 214.24 518.88
MLP 9-3-1 0.975 0.985  0.926 0.97 097 0.86 403.55 192.35 926.96
MLP 9-4-1 0.969 0.958  0.966 0.95 092 095 472.70 341.77 553.00
MLP 9-7-1 0.994 0.977  0.990 0.99 095 098 201.78 267.32 384.79
MLP 9-10-1 0.994 0979 0973 0.99 096 094 200.88 228.50 612.46
MLP 9-11-1 0.992 0.967  0.922 0.99 094 0.89 229.55 296.54 843.20
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Table S. Performance parameters of the artificial neural network for predicting the EC concentration, in training, testing,

and validation phase (NRMSE, RMSEr and MAE)

ANN NRMSE RMSEr MAE
Structure

Training Test validation = Training  Test validation Training Test validation
MLP 9-8-1 0.032 0.042 0.085 0.161 0.138 0.228 193.69 260.84  508.66
MLP 9-12-1 0.025 0.041 0.068 0.111 0.175 0.202 141.37 200.30 432.47
MLP 9-5-1 0.036 0.039 0.160 0.191 0.169 0.320 218.59 260.20 864.29
MLP 9-13-1 0.055 0.015 0.101 0.205 0.093 0.250 295.65 98.12  556.85
MLP 9-9-1 0.030 0.032 0.095 0.125 0.129 0.253 174.31 181.78  563.19
MLP 9-6-1 0.027 0.029 0.071 0.131 0.105 0.190 148.90 180.91 393.13
MLP 9-3-1 0.055 0.026 0.126 0.183 0.104 0.232 329.40 154.97 693.82
MLP 9-4-1 0.064 0.047 0.075 0.228 0.201 0.375 377.33 317.11 531.46
MLP 9-7-1 0.028 0.036 0.052 0.20 0.18 0.19 159.03 228.19 33224
MLP 9-10-1 0.027 0.031 0.084 0.15 0.13 0.30 154.09 175.58  546.17
MLP 9-11-1 0.031 0.040 0.115 0.19 0.16 0.30 186.86 216.21 662.85
D. Electrical conductivity (EC) model -
Twelve architectures ANN were used to predict the e . ° opeeuneq Ec( fraiom)
conductivity in the Zahrez groundwater. The performance ‘000 # . biadieroq Ecleem)
parameters of the training, test and validation sets are shown o000 ! !
in Table 3. The selected ANN (MLP-9-12-1) provided a best | *
fit model for the training and test data sets. The constructed _ 2000 '
ANN model (EC) was trained using the BFGS quasi Newton 2
Algorithm (BFGS 55). For the best MLP network model A " 100
non-linear transfer function (Tanh) was used in the hidden 3000 | a

layer and a non-linear transfer function (Logistic) in the
output layer.

The respective values of RMSE, NRMSE, and MAE for the
two data sets are 184.47, 0.025 and 141.37 for training,
297.39, 0.041 and 200.30 for testing. The correlation
coefficients (R) for the training, test and validation sets were
0.995, 0.966 and 0.982, respectively. The respective values
of NASH for the training and testing sets were, 0.993 and
0.935 respectively, suggest for a good-fit of the selected EC
model to the data set. The scatter plot of observed versus
modeled values of EC are shown in Figure. 4 and 5. The
coefficient of correlation (R) values for the training, test, and
validation sets were 0.995, 0.966 and, 0.982, respectively,
suggesting a good-fit of the EC model (MLP-9-12-1) to the
data set.
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Fig 4. Measured and predicted EC by MLP (9, 12, 1)
model in training, testing, and validation phase.

IV. CONCLUSION

In this study artificial neural network (ANNs) was developed
to predict total dissolved solid (TDS) and electrical
conductivity (EC) in groundwater of the Zahrez basin. The
results indicate that, the ANN- MLP (9, 9, 1) model provided
a best accuracy for prediction of the TDS concentration. It is
found that the coefficient of correlation (R) values for the
training, testing, and validation sets were 0.995, 0.976, and
0.984, respectively, the respective values of RMSE, NRMSE,
and MAE for the two data sets are 99.10, 0.024 and 81.08 for
training, and 140.42, 0.034 and 111.47 for testing, and
289.77, 0.071 and 211.77 for validation. The results of the
predictive ANN models of electrical conductivity (EC)
showed that the ANN- MLP (9, 12, 1) model provides the
best accuracy , with the coefficient of correlation (R) of
0.995, 0.966 and, 0.982 for the training, test and validation
sets, respectively. The respective values of RMSE, NRMSE,
and MAE for the two data sets are 184.47, 0.025 and 141.37
for training, 297.39, 0.041 and 200.30 for testing, and 497.78,
0.068, and 432.47 for validation. Finally, from the results
obtained, an ANN model appears to be a useful tool for
prediction of the groundwater quality parameter in the Zahrez
basin.
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