International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-03, Issue-07, July 2016

FPGA Design and Implementation of PCle Target for
High Speed Data Transfer to the Devices

Komala M, Dr. Narataj K R, Dr. Mallikarjunaswamy S

Abstract— Now a days it is very important to
achieve a high speed data transfer and high throughput.
A very efficient way to achieve the same is the usage of
PCI bus technology. It has been proven that it is a plug
and play for the hosts using it. It requires no additional
protocols or data integrity as necessary in other
protocols. In this paper we have proposed a high density
field- programmable gate array (FPGA) based
architecture using PCI bus interface for high speed data
transfer from the dram for usage of BIG data analytic.
The design is incorporated with programmable PCI
master core which act as an interface between PCI bus
and the internal logic design of FPGA. It also comprises of
local FIFO for synchronization. A complete FPGA design
has been developed in order to interface FIFO and PCI
core. The paper is organized is a way which first give the
basic idea and over view of PCI IP core usage and its
importance followed by design and logic for developing
communication with the bus. Finally the results display
the way functionality was achieved and design efficiency
is compared with the others.

Index Terms— FPGA, PCI IP Core, FIFO, Xilinx, Bus
Interface

[. INTRODUCTION

The recent development in digital systems has generated
various new requirements on the system design engineers.
The basic requirement is interface that has high performance
and is very much compatible with third party vendors system.
The issue like compatibility can be addressed by using a
designing a systems with bus interface which has industry
standards like ISA, VESA, etc. However, the performance
issue was still a very big concern for the system designers. By
the introduction of new interface standard named as PCI
(Peripheral Component Interconnect) the performance issue
was effectively eliminated. The standard was developed to
meet all the necessary requirements of new age digital
computer system [1]. If we look in to the basic specification of
PCI we can find it has got top features like operating speed of
33MHz, 32 bit PCI version can be used for high speed data
transfer of 132Mbytes per second as its maximum transfer
rate. Not only the compatibility and the performance of the
standard make it very useful but also it has got very well
documented standard support by special group.

Manuscript received June 29, 2016

Komala M, Research Scholar, JAIN UNIVERSITY, Bengaluru

Dr. Narataj K R, Prof & HOD, Dept. of ECE, SIBIT, Bengaluru

Dr. Mallikarjunaswamy S, Associate Professor, Dept of ECE, SIBIT,
Bengaluru

29

| PCI BUS |

FIXED FIFO FIXED DMA

PCI Chipset

BACK END BUS

| PROCESSOR |

Fig 1 Basic architecture of PCI interface.

II. RELATED WORK

Due to development is technology like big data there is a
sudden rise in requirement for high capacity storage systems.
These high capacity storage systems generally built based on
two methods namely SAN (Storage Area Network) and the
other is based on Distributed systems [2].

SAN is designed based on idea of network where there is a
need to maintain a server like RAID server and all the storage
devices are then connected using a dedicated network. These
physical storage networks are Ethernet based using protocol
such as iSCSI or FCoE, usage of these software generally
makes the system slow by increasing the latency of the overall
system. A solution to overcome the problem of latency is the
usage of other type of storage mechanism like distributed
system. In this technique the storage elements are distributed
among the various application hosts and make use of regular
network to access them along with distributed system like
NFS, Lustre, GFS etc [3]. Another challenging task after
reducing the latency is to achieve the high speed data transfer
between the memory element and the device in use. This can
be done by the usage of high speed dedicated protocol bus
named as PCle.Fig.1 shows the basic architecture of PCI
interface

There are enormous design available which are used for the
communication between PCI bus and the backend device and
the FPGA such as PLX interface chip PCI9054. However we
have designed a PCI device on FPGA for the communication
with the devices. The design has been built based on standard

www.ijerm.com

FPGA Design and Implementation of PCle Target for High Speed Data Transfer to the Devices

32-bit architecture and is capable of communicating with PCI
bus protocol and the FPGA internal logic for the specific
application.

III. SYSTEM ARCHITECTURE

Fig2. Shows the basic block diagram for the proposed PCI
top that will be used as a communication medium between the
backend devices working on PCI protocol to PCI bus. This
block works as a data path controller and medium for transfer
of data from the bus to the device and vice-versa [4].

GLUE STATE RETRY
LOGIC MACHINE COUNTER
PARITY BASE CONFIG.
BLOCK ADDRESS MUX

Fig.2. Top level of PCI Target

The architecture is based on 32-bit architecture which works
on 33MHz for PCI target reference design. Design initiates
the work after PCI initiator sends the signal to start the PCI
cycles. It performs various read and write operation with the
memory element on the standard bus. PCI target further
decodes the address during the address cycle as the base
address is hit. An acknowledgement is passed once the cycle
is completed. Below we have discussed in detail operation of
memory read and write operation performed by the design.

3.1 Memory — I/O Read Cycles

The design developed typically works on a sate machine that
can execute single cycle for the read operation and also full
length burst read cycle. Certain signals are made high during
the operation when the sate machine detects the read
command and also finds an address matching to any based
address in region [5]. The information is passed to
corresponding devices connected to the bus. Once the devices
receive command an acknowledgement is pass back to the
state machine in form of ready signal to inform sate machine
to start the execution. Initially a double word is read and the
transaction is completed if the process is related to the single
cycle read. The process of reading a double word is continues
if the process is a burst read operation and the corresponding
device supports the burst operation. If back end device do not
support the burst mode of operation is should inform the sate
machine by asserting a signal [6]. Once state machine receives
this signal it stops providing the burst data and burst read
operation mode is terminated. The signal assertion is
necessary to be done at-least two clock signal in advance in
order to get smooth termination of the operation. Under any

30

unwanted situation corresponding device can raise abort
signal to terminate the operation at any instance after the
starting of read operation.

3.2 Memory — I/O Write Cycles

This operation is has the same functionality as a read cycle
[11]. This also works on a sate machine that can execute
single cycle for the write operation and also full length burst
write cycle [12]. Certain signals are made high during the
operation when the sate machine detects the write command
and also finds an address matching to any based address in
region. The information is passed to corresponding devices
connected to the bus. Once the devices receive command an
acknowledgement is pass back to the state machine in form of
ready signal to inform sate machine to start the execution.
Initially a double word is written and the transaction is
completed if the process is related to the single cycle write [7].
The process of writing a double word is continued if the
process is a burst write operation and the corresponding
device supports the burst operation. If back end device do not
support the burst mode of operation is should inform the sate
machine by asserting a signal. Once state machine receives
this signal it stops providing the burst data and burst write
operation mode is terminated [8]. The signal assertion is
necessary to be done at-least two clock signal in advance in
order to get smooth termination of the operation [9]. Under
any unwanted situation corresponding device can raise abort
signal to terminate the operation at any instance after the
starting of write operation [10].

Sy > DATA_OUT
RST (—p
FULL
—
RD_EN

—_— FIFO

WR_EN EMPTY

—_—

DATA IN|

Fig. 3 Functional I/O for FIFO

Apart from this state machine, the design has two FIFOs
transmit FIFO and receive FIFO [13]. Fig.3 shows back
functional I/O for the designed FIFO [14]. The transmit FIFO
temporarily stores the data from CPU and devices which is to
be written into the memory through PCI device [15]. And
when there is request to write more data than transmit FIFO
holds, the FIFO becomes empty and under-run error occurs
[16]. The receive FIFO temporarily holds the data read from
the memory to CPU or other device through PCI device.
Overrun error is associated with this FIFO [17]. The depth of
both FIFOs is defined as eight locations of byte wide.

IV. RESULTS AND DISCUSSIONS

Fig.4 shows the RTL schematic for the PCI top that is
developed

www.ijerm.com

International Journal of Engineering Research And Management (IJERM)

pci__top

Fig.4 RTL Schematic for the developed PCI top.

The design summary for PCI top is as shown in fig.5

pi._top Project Status (05/13/2016 - 08:16:24) ‘

Project File: test il e Parser Ervors: iNo rrs
Hodule liame: ni_top Implementation State: ‘Synmesized
Target Device: 325085t 144 sErtors: ‘
Product Version: 15134 +Wamings:
Design Goak Balnced + Routing Results:
Design Strateqy: i Defaut ulocken +Timing Constraints: ‘
Environment: System Settings +Fingl Timing Score: ‘

Device Utiization Summary (estimated values) | [
Logic Utiization Used Available tiization
Humber ofSes i P 0%
Number of 4 put UTs ! 415 0%
unber of bonded 10Bs 7) 1%
Humber of GELKS ! P P

Fig.5 Design Summary for PCI Top.
The simulated waveforms for the read cycle for PCI top is
shown in fig.6

v A .
T Tt e Comple Sl 0 o Tk Ui Wdee

FEE S 1R ATY | e

B OEA0|| g 4es it

pHUNRE WO FHE YA

sl RN S AE IR YN i |

ki T

Flg.6 Read cycle for the PCI top.
The write cycle simulation waveform is shown in fig.7 for the
PCI top.

31

ISSN: 2349- 2058, Volume-03, Issue-07, July 2016

il g

i O e Conple G B0 Ve 0 Wike W

e S ERRIT TS|

B OERM | g ee B wpiURUA HEAHEYYS
i

e P T A T R

Py ke d Q05

_Inn

g, ik

. Fig.7 Write cycle for PCI top;

A Moo LS
e it Yer Conge Gl L

r;N'l \‘l.\r linin pp
a8 IRRITIATY |

LYE B A E TN

.

e UL HFAHEYYS
WHOBg
‘ it W JLRARTES| G009 vz by) G5REY 1

b
LLE
LT T
L1 T
Juame) W
bl b
Sibim| n
o beibiieml] Bl
P T

+ b0 o
LT E T
ET1 B]
L LT TR
o b bt ot
o BibEl W L
it m
o e b, 8
o b e s, B
Sibiey] @
ks m
o peBidin)
o i) B
9 b nhsdn) R
o bl o 81
o be B | 2
iR ™

] o o e o]

Jo: L5080 |

W]]

i 5T 7]

i i M

Fig.8 Final Simulation for the design.

The final simulation waveform for the PCle target is obtained
which is shown in fig.8

CONCLUSION

This project has been Implemented keeping in mind the
standard used in PCle target to meet the requirements. The
design was developed on Xilixn Spartan 3E device using
verilog HDL. Complete functional verification has beed done
for various mode of operation and found to work satisfactory
as per the design requirements. Little improvement has also
been achieved as compared to the previous design
implemented on similar device. The design si fully functional
and can be used for the any application that requires high
speed data transfer using the basic standards of PCle.

REFERENCES

[1] Ray Bittner “Speedy bus mastering PCI express” 22nd
International Conference on Field Programmable Logic and
Applications (FPL) Aug. 2012, PP 523 — 526.

www.ijerm.com

FPGA Design and Implementation of PCle Target for High Speed Data Transfer to the Devices

[2] Sven Heithecker ; Rolf Ernst” FlexWAFE - A High-end Real-Time
Stream Processing Library for FPGAs” 2007 44th ACM/IEEE
Design Automation Conference, 4-8 June 2007,PP- 916 — 921.

[3] J. Gong, J. Chen, H. “EPEE: An Efficient PCle Communication
Library with Easy-host-integration Property for FPGA
Accelerators” FPGA '14 Proceedings of the 2014 ACM/SIGDA
international symposium on Field-programmable gate arrays,PP
255-255.

[4] M. Jacobsen and R. Kastner “RIFFA 2.0: A reusable integration
framework for FPGA accelerators” 2013 23rd International
Conference on Field programmable Logic and Applications, 2-4
Sept. 2013, PP 1 - 8.

[5] J. A. Jake Wiltgen. “Bus Master Performance Demonstration
Reference Design for the Xilinx Endpoint PCI Express
S”lutions" September 29,PP 23-24.

[6] H. Kavianipour, S. Muschter, and C. Bohm. High performance
FPGAbased DMA interface for PCle. In RT 2012.

[7]1 G. Marcus, W. Gao, A. Kugel, and R. Manner. The MPRACE
framework: An open source stack for communication with
custom FPGA-based accelerators. In SPL 2011.

[8] T. S. Ravi Budruk, Don Anderson. PCI Express System
Architecture. Addison Wesley, 75 Arlington St., Suite 300,
Boston, MA 02116, 2003.

[9] Y. Thoma, A. Dassatti, and D. Molla. FPGA2: An open source
framework for FPGA-GPU PCle communication. In ReConFig
2013.

[10] K. Vipin, S. Shreejith, D. Gunasekera, S. Fahmy, and N. Kapre.
Systemlevel FPGA device driver with high-level synthesis
support. In FPT 2013.

[11] Q. Wu,J. Xu, X. Li, and K. Jia. The research and implementation
of interfacing based on PCI express. In ICEMI 2009.

[12] C. Hinkelbein, A. Kugel, R. Minner, and M. Miiller,
"Reconfigurable hardware control software,” in RSP '02:
Proceedings of the 13th IEEE International Workshop on Rapid
System Prototyping (RSP'02). Washington, DC, USA: IEEE
Computer Society, 2002, p. 84.

[13] G. Marcus, G. Lienhart, A. Kugel, and R. Ménner, "On buffer
management strategies for high performance computing with
reconfigurable hardware," Field Programmable Logic and
Applications, 2006. FPL '06. International Conference on, pp.
1-6, Aug 2006.

[14] M. Miiller, "Evaluation of an fpga and pci bus based readout
buffer for the atlas experiment," Ph.D. dissertation, 2004.

[15] Eugin Hyun, Kwang-Su Seong, Desing and Verification for PCI
Express Controller. Proceedings of the 4.Third International
Conference on Information Technology and Applications, 2005.

[16] Adam Wilen, Justin P, Schade, Ron Thornburg, Introduction to
PCI Express: A Hardware and Software Developer's Guide. Intel
Press, 2003.

32

www.ijerm.com

