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Abstract— The basic requirement of the digital
information and communication system is the error
control coding. The errors are introduced into the digital
data due to the transmission of data via a communication
channel. Error correction coding is the process of
correcting the errors based upon received data. Error
correcting codes find application in the fields of digital
data communications and memory system design.

In this project the BCH (Bose, Chaudhuri, and
Hocquenghem) code is being implemented using a Field
Programmable Gate Array (FPGA). BCH encoder and
decoder are being designed and simulated using Altera
Quartus and implemented in a FPGA. In this
implementation, 5 bits of random error is corrected for
the code of length 255.

Index Terms— BCH; FEC; Galois Field

I. INTRODUCTION

The demand for digital transmission and storage system has
been accelerated with the rapid development and availability
of VLSI technology and digital data processing[3].

In the digital systems, the fully reliable environment is
expected, as the occurrence of a single error may result in
shutting down of the complete system. Thus error control
mechanism must be employed to detect the error and later on
to correct them. The simple way of error correction is done by
adding the parity bits to the original message, thus forming an
encoded data[4]. This encoded data, when reaches the
receiver, it is decoded to retrieve the original message.

In coding theory, the two main types of coding are Systematic
code and Non-Systematic code. Any error-correcting code
where the input data is inserted in the encoded output is called
the Systematic code. Conversely, in Non-systematic code the
input symbols are not present in the output. The advantage
with the Systematic code is that the parity data can simply be
appended to the input message data, and receivers need not
recover the original data, if received correctly. There are two
types of errors in wireless communication, namely Random
errors and Burst Errors[4][3].
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e RANDOM ERRORS: The transmitted errors that
occur due to the presence of white Gaussian noise
are referred to as Random errors.

e BURST ERRORS: Impulse noise is characterized by
long quite intervals followed by high amplitude
noise bursts. Examples of impulse noise are noise
that arises due to lightning, switching transients,
man-made noise etc.

Here the Random error correcting code called the BCH code
is developed. This code handles randomly located errors in a
data stream.

II. FORWARD ERROR CORRECTION AND GALOIS FIELD

A. Forward Error Correction (FEC)

The transmitter sends the information and the receiver which
has the Forward error correction (FEC) technique recognizes
only that portion of the input information which has no errors.
As the handshaking signal between the transmitter and the
receiver is not required in FEC, it can be used to broadcast the
data from a single source to many destinations
simultaneously. Forward Error Correction (FEC) code is able
to detect a small number of random errors that occur in the
received data and correct them without asking to transmit the
data again. The two basic types of FEC codes are: Block
codes and Convolution codes

e BLOCK CODES: Block codes contain (n-k) number
of check bits being added to “k” bits of information
to form “n” bit code. These, (n-k) check bits are
generated using the “k” information bits.

e CONVOLUTION CODES: In convolution code, the
check bits are appended to information bits
continuously as the data enters the receiver. These
parity check bits will help to correct errors.
Convolutional codes are effective on bit or symbol
streams of arbitrary length.

B. Galois Field
Galois field is named after Evariste Galois, known as the
finite field, where the elements in the field are finite. The data
in the Galois field is represented in the binary vector format,
and the mathematical operations can be performed
effectively[7].
The most used operation is ‘integer mod p’, when p is prime.

Galois field contains a zero element called as Primitive
element ‘a’, such that all other elements can be expressed as
the power of primitive element. The existence of a is asserted
by the fact that the non-zero elements of GF(p™) forms a
cyclic group.

p™ is the order of the field, and p is called the characteristic of
the field.
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The order of field is prime or the power of prime.

Example: GF(2°) = (0, 1, 2, 2+1, 2%, 2%+1, 2%+2, 2+2+1)
=(0,1,2,3,4,5,6,7)

GF(2’) has 8 elements, each polynomial of degree at most 2,
evaluate at 2[7].

III. IMPLEMENTATION OF BCH CODES

BCH codes have got a ton of consideration as communication
systems and data stored in memory systems all are in digital
form, thus BCH codes are widely used. BCH codes are
powerful random Error Correction Codes. BCH codes
function over finite fields or Galois fields. The biggest
advantage of BCH codes is the existence of efficient decoding
methods due to the special algebraic structure introduced in
the codes. The BCH codes are implemented as (n, k, t) codes

where, n = code length: number of bits in encoded data
k = number of bits in original message
t = error correcting capability.

For any positive integer’s t <2m—1 and m > 3, there exists a
binary BCH code with the pursuing parametric quantities[3]:

Code length: n=2"-1

Information bits: k>n-m*t

Minimum distance: dmin > 2t + 1

A flow chart of the operations of the BCH is shown in figure 1
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Fig: 1: The flow chart of the operation of BCH code.

The operation of BCH codes can be divided into two blocks
namely, Encoder and Decoder Blocks. The Encoder block
and Decoder block have many modules using which the
encoding and the decoding operation is performed.
The generator polynomial of the code is indicated as its roots
over the GF (2™). Let o be a primitive element in GF(2™).
For 1 <i<t, let ¢y.1( X) be the minimum polynomial of the
field element a %' [5].
The generator polynomial G(x) of a t-error-correcting
primitive BCH code of length 2" —1 is given by
G(x)=LCM { ¢1(X), ®2( X) 5evevrerenenen. ,h01(x) (1)
a. Encoder
The encoding function is done by generating the (n-k) parity
bits using the generator polynomial and the message bits.
BCH code word is encoded as:

c(x)= x"%=i(x)+ b(x)
2
Where,
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Codeword polynomial. ¢ (x)=co+ c1x +.. + co1x®L
Information polvnomial i(x) = ip + 11x +.._+ fe1xF1,
Remainder polynomial b{x) = bo + bix +._+ b 1x™!
and cj, 1. bj € GF (2).

The block diagram for the encoding circuit for (n-k) bits is as
shown in the figure 2.

by * bxl
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2

Fig: 2: The encoding circuit for (n-k) bits

When the switch 1 is closed for k bits, the message and the
generator polynomial are considered. If any location of the
generator polynomial is ‘1°, then the register performs the
Exclusive OR operation with the feedback. The feedback is
obtained by the Exclusive OR operation of 215" bit of
message and the 39" register value. If the generator
polynomial is ‘0, then mere shift operation of the register is
performed. Thus the parity bit of length 40 is obtained.

The encoded data is given as in figure 3.

o e

[nformation bits
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Fig: 3: The encoded data
b. Decoder

The decoder operation can be performed in four steps, namely
Syndrome computation, Error coefficients determination by
Berlekamp Massey Algorithm, Error location by Chain
Search Algorithm and Error correction logic[3]. The block
diagram of different blocks in the decoder is as shown in
figure 4.
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Fig: 4: The block diagram of BCH decoder
The syndrome calculator is the first module at the decoder, the
design of this module is almost same for all the BCH decoder
architectures. The input to the syndrome module is the
received code word[3]. The received polynomial may be
corrupted with error pattern e(x) as:

1(x) = ¢(x) + e(x) 3)

where the received code word is
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(X)=To+ X+ xX+. oo, + g XM
Transmitted code word is given by:
c(X)=cote X+CoXi+......... + oy X"
The error pattern is:

e(X)=cote Xx+er X +......... + ey X"

For decoding the ‘t” error correcting BCH code, the syndrome
is a 2t tuple: S=(S1,S2,.....,S2t)
Syndrome Si can be computed as:

Si=r(ai)=ro+troi+naii+...... +rena™i @)
where 1 <i<2t—1.
The o', o, .......... o™ are the alpha values. The alpha

values are the roots of the generator polynomial obtained
from the primitive polynomial. They are represented as ai
where 0<i<n. Since t =5, the syndromes will be

S=(S1, S2, ...... S10).

The syndrome computation is done to the received data.
The syndrome values are used to find the error coefficients by
using the Barlekhamp Massey algorithm.

The error vector is generated by using the error
coefficients. The error location is determined by the error
vector and the error correction is performed to obtain the
decoded data.

Thus the decoded data is stored and compared with the
encoded data. This comparison is done by computing the
syndrome calculation. If the syndrome is zero then there is no
error. Thus the decoded data is error free.

The Barlekhamp Massey algorithm is as given below.

Input: Si. Sa, ..... Spo (the syndromes)
Initialization:
Len=0
ELP(x)=1
PELP(x)=1
j=1
dp=1
for k=1 to 1@,
d=S,+Y ELRS;;
if d=0

(the current error locator polynomial)

(the previous error locator polynomial)
(the previous discrepancy)

(compute discrepancy)
=l (no change in polynomial)
J=i+l
else
if 2Len>k then
ELP(x) = ELP(x) - dd},;'x’ PELP(x)
J=i+l
else
temp(x)=ELP(x)
ELP(x) = ELP(x) - dd,,'x) PELP(x)
Len=k-Len
PELP(x)=temp(x)
dy=d
j=1

(temporary storage)

end

Results (5)

The MATLAB code for generating primitive polynomial and
the generator polynomial for the message of length 215 is
written and the results are observed. The m value taken is 8.
The output is seen as a Galois Field value.

The primitive polynomial for n=254 and k =214 and t=5 is
generated in the MATLAB.

The generator polynomial is generated by using the primitive
polynomial. Here the generator polynomial is
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101000111100000010100110011010100 | X4781489A93
10011 ”

The 215 bit input message for the proposed IP core is
generated by concatenating the 8 bit input data 26 times and
appending it by 7 bits of logic 0.

The encoder circuit generates the parity bits using the
message and the generator polynomial. The parity bit is of
length (n-k) i.e. (255-215) = 40 bits. The encoder output is the
concatenation of the 215 bits message and 40 bits parity, thus
forming 255 bit encoded data. The generator polynomial,
parity bits X”390231CCA6” and the encoded data for the

11111111
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Fig 5 Encoded data

The syndrome is calculated for the encoded data with the
error incorporated in it. The error coefficients are calculated
using the syndrome and thus the error vector is generated
using the Berlekamp Maessy Algorithm. The error
coefficients calculated to the above syndrome, the error
vector and the error locations are found out.

The error correction is done by performing the XOR
operation to the error vector and the corrupted data. Thus the
decoded data is produced as shown in figure 6. But the
verification for the errorless data is done by calculation the
syndrome to the decoded data. If the syndrome values are
zero, then the decoded data is error free.

L L e 0 o
L L L e 0 0

U L

0

Fig 6: Decoded data

The code is being dumped on the Cyclone IIT FPGA, the
JTAG is used to transfer the data to and from FPGA and
computer. The encoded data from the FPGA is seen on the
Signal Trap Logic Analyzer, the tool from Altera Quarts to
view the results from FPGA. The encoded data is as shown in
figure 7.
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Fig 7: Encoded data seen on Signal trap Analyzer.
The decoded data, with syndrome calculation, error location
and correction logic is seen on the Signal Trap Logic
Analyzer as shown in figure 8.
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Fig 8: Decoded data seen on Signal trap Analyzer.

CONCLUSION

The problem arising during transmission of the data through
the channel is tried to reduce by reducing the number of error
occurring and also enabling the rectification of the error.
BCH codes have been shown to be excellent error correcting
codes among codes of short lengths. They are simple to
encoder and relatively simple to decode. Due to these
qualities, there is much interest in the exact capabilities of
these codes.

The speed and device utilization can be improved by adopting
parallel approach methods.

The efficiency can be improved by adopting codes of longer
lengths. Due to this advantage, BCH codes are used in
High-speed modems such as ADSL, XDSL and even in
satellite and wireless communications.
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