
International Journal of Engineering Research And Management (IJERM)

ISSN : 2349- 2058, Volume-03, Issue-07, July 2016

 122 www.ijerm.com

Abstract— In today’s ubiquitous world, mobile phones

get an important place in people life, without which they

feel handicapped or uncomfortable. When an application

is installed on the user’s device that is prone to a

vulnerability of the device as well as application files.

Information flow using mobile devices are also not in

encrypted for most of the time. Because of this reason,

Security is more important to user as well as to the

application developer. Mobile application security, the

process to verify vulnerabilities issues, is the main

concern in the development of mobile application. In this

paper, we propose the framework to test and verify

mobile application, to be acted as an attacker, to prevent

the application and user details to be misused. We

suggested combining the approach of model based and

fuzzing testing approach to find the security defects and

threats from the developer and third party verification of

user identification.

Index Terms—Fuzzing testing, model based testing, mobile

application, security testing.

I. INTRODUCTION

Smart device usage is growing day by day. In recent years,

more advancement in technology and mobile computing

evolved. People install and download apps which are helpful

to them to get connected with world, social media as well as

professionally. However, attackers can easily be

eavesdropping information and inject various malware

activities in form of attack. Such issues must be detected or

prevented using different techniques.

Software testing is as old as the hills in the history of the

digital world. It is as much important to uphold the

quality of measuring software [1]. In [2], Software testing

reveals the only presence of defects, but not able to find an

absence of defects. Software testing consists of the dynamic

verification of a program which provides expected behaviours

with actual behaviours on a finite set of test cases, derived

from the infinite execution input domain, so called dynamic

testing. The application which need be tested is called

Application Under Test (AUT). Based on the objectives,

accessibility and scope of testing, it can be classified and

mapped on three dimensions’ [3] as shown in Fig. 1.

In this paper, we first discuss the way third party verification

Manuscript received July 22, 2016.

 Vishruti A. Desai, Computer Engineering Department, C.K. Pithawalla

College of Engineering and Technology, Surat, India

Dr. Vivaksha Jariwala, Associate Professor, Information Technology

Department, Sarvajanik College of Engineering and Technology, Surat,

is to be taken by the application developer. Model based

Figure 1: Three Dimensions of testing [3]

testing and Fuzzing testing functionality is also briefly

described. Then different threats suggested by OWASP

(Open Web Application Security Project) for mobile

application. In last section, our proposed approach as a tester

for detecting vulnerability in testing phase of mobile

application. In the last section, we discuss issues to be

attended for prevention of attacks.

II. BACKGROUND

Any mobile applications are on security risk edge because of

two reasons, one is security flaw originate at the time of

development and the other way application is cloned with

extra features that run in the background and work as

malicious code.

A. User third Party Authorization

As suggested in [4], OAuth 2.0 authorization framework

(RFC 6749), describes the complete procedure for

authorization of user using a third party. The aauthorization

code grant flow is cryptographically secure as it uses transport

layer security (TLS) [14].

As shown in fig. 2, gives steps as it is mentioned.

Step A: As an initialization step, client request sends to

resource owner for authentication, that can be verified

directly from resource owner or indirectly verify by the

authorization server as an intermediate.

Step B: After valid authorization, client receives an access

grant credential that depends on type of method client uses or

authentication as well as grant types supported by the server.

Step C: In the next step, client requests for an access token

together with grant permission from the third party

authorization server.

Step D: As an acknowledgement for step 3, sever gives access

Security Framework for Model Based and Fuzzing Testing

in Mobile Application

Vishruti Desai, Dr. Vivaksha Jariwala

http://www.ijerm.com/

Security Framework for Model Based and Fuzzing Testing in Mobile Application

 123 www.ijerm.com

Figure 2: User Authorization flow in OAuth 2.0[4]

token of resource owner, if valid grant type and credential.

Step E: Afterwards any access by user from the resource

server happen through access token only.

Step F: With valid access token, permission is given to client

for resource utilization.

B. Model Based Security Testing

Model-based security testing (MBST) is an emerge range in

research area of software testing and especially relies on

system models to test. Mobile application designs meet its

non-functional requirements in the form of security

requirements. As mentioned in [5], MBST is basically

devoted to the systematic and efficient security based

documented specification. That documentation contains test

objectives, test cases and test oracles, as well as to their

automated or semi-automated generations. MBST is used for

generating test cases (events) by considering different model

representation using an algorithm or graph theory or state

machine diagram, so it can easily be applied to generate it.

Different models generate different path coverage. We need

to consider the technique, that gives all possible paths in the

model.

C. Fuzzing Testing

Fuzzing needs to be integrated with another testing approach

to be easily applicable within application context and

organization boundary. The author stated in [6], Fuzzing is a

form of vulnerability testing that can be used to test any kind

of application (web, mobile). It is excellent for exposing very

serious vulnerabilities. The idea behind it is repeatedly send

malformed data to the application in the request and response

(or not) that it causes it to crash. Fuzzing does not require to

involve source code, it is easy for attacker to inject

vulnerability in the application. There are various forms of

fuzzing: mutation-based, generation-based and

behavior-based. Each one has merit and demerits, based on

application specific can be chosen. In focus, Behaviour

fuzzing finds flaws in the system design model and

vulnerabilities within it that are not only exposed by applying

invalid input data.

III. RELATED WORK

In [7], as per OWASP provided mobile application threats are

Insecure Data Storage, Weak Server-Side Controls,

Insufficient Transport Layer Protection, Client Side Injection,

Poor Authorization and Authentication, Improper Session

Handling, Security Decisions via Untrusted Inputs, Side

Channel Data Leakage, Broken Cryptography, Sensitive

Information Disclosure. We need to take any of the security

problem for user information protection.

As defined in [8], various taxonomy for model based testing

with different filter and evidence criteria are provided. As a

filter criterion, system security model, environmental model,

and explicit test selection are listed. For evidence, maturity of

evaluated system maturity, measures, and level are also listed.

As author in [9] stated that OWASP of mobile security

consider end user device security as well as server side

infrastructure security. The intruder has access to the root

with privileges that is more vulnerable as security risk [9].

In [10] authors specify, there aren’t any global standard for

mobile security guidelines which must meet for mobile

devices. They only consider security in physical, transport

and application layers of OSI. Apart from no standard, some

security threats are identified by the National

Institute of Standards and Technology (NIST) that includes

device loss, virus and malware through USB devices, wireless

ports and many other ways, and lastly while accessing spam.

Now in [11] author proposed, security in software is not only

correctness and completeness of security function. As it is

verified in the requirement phase but its more than

functionality and performance of the system. Even different

software security testing techniques, Code reviews,

Automated static analysis, Binary code analysis, Fuzz testing,

Source and binary code fault injection, Risk analysis,

Vulnerability scanning, Penetration testing are listed.

In the survey report [12], authors have conducted the

interview with industry people by questioning. It is used in

website development, communication, embedded software

and many more. Automatic test case generation, reusability of

model components listed as benefits of it. Still, many industry

experts are not skill for this type of testing because of limited

knowledge in model based. Tools are not user friendly. Apart

from that benefits are reduce the cost, efficient, more

accurate.

Two RFC [4] and [13], OAuth Protocol, basically focused on

architectural protocol specification and design in related with

security.

HTTP Fuzzer [15], WebScarab [16], and NoTamper [17], are

testing tools which accept pre-request fuzzing, fail to observe

different responses for the requests [18] [19]. Black box

testing just takes protocol based information and does not

give full coverage. Apart from this Fuzzing works,

model-based testing (MBT) give full coverage including all

paths.

It is stated in [20] , to find defects with manual testing, MBT

give better performance as it is mostly used in software testing

[21], for web application, client server and embedded

systems. While previously implemented various MBT [22]

[23] [24], consider correct model is available during testing.

http://www.ijerm.com/

International Journal of Engineering Research And Management (IJERM)

ISSN : 2349- 2058, Volume-03, Issue-07, July 2016

 124 www.ijerm.com

IV. OUR PROPOSED APPROACH FOR FRAMEWORK

System Specification

(Semi-formal / Formal) Algorithm

1. Modeling

Application Under Test (AUT)

Model
Test Generation

Collection of Test Suits

(Abstract Form)

2. Test Generation

Test Design Test Scripts

3. Test Translation

T
e

s
t
E

x
e

c
u

ti
o

n

Test Run

Behavioural

Fuzzer

4. Fuzzing

Input

Automatic Test

Generation Tool

Data / Process

Input

Test Generation
Test Execution

Oracles
Test Result Comparator

Test Execution

Trace

5. Execution

COMPARISON

Figure 3: Steps for proposed framework

The way software application is delivered to end users,

downloaded in markets create the false sense of security.

Traditional security approach for software applications in

commercial purpose are very different than mobile

application. Industrial software development practice,

security is not the only issue for mobile application, but it

leads to compromises of millions of user’s privacy and

devices information.

Novel research challenge arises in software testing area. One

is to appease model-based derivation of test cases with

evolving dynamically modern systems. Another is to select

and use runtime environment data collected from real usage

when application deploy in mobile device. During

requirement stage, design models and graphical

representation are used in Software Requirement

Specification (SRS) to represent the system. In SRS, system

specification is written in semiformal or formal languages. In

our proposed framework, we believe correctness and

completeness of the system specification with user

requirements.

As fig. 3 describes the basic blocks and the steps needed to

use combining the approach of model based and fuzzing. Here

we consider the advantages of both. As model based testing,

we represent our system (an application) in the form of model

that gives all path coverage for generating test cases. In

fuzzing, generate invalid input data as well as change event

sequence necessary to generate the valid response from the

server as well as third party authentication [11]. Our proposed

framework works on following steps and finally generates the

report about negative response and security threats in the

system. We assume tester will work as an attacker for the

application to find the loophole of the application. With the

procedure of our framework that works with the mobile

application and check the security properties of it.

In fig. 3, it gives a flow of our proposed testing framework

with actual testing steps taken while tester checks any

application for verification.

1.Modelling: Give input as a system specification, must be

taken in the form of semi-formal or formal specification, is

given to the algorithm. The algorithm finds all the possible

path coverage to generate different sequence of execution.

2.Test generator: Various paths generated in the previous

step, together make one test suits in abstract form.

3.Test translation: As a translation, derived test suit is

generated and well-formed written as a various test scripts. It

covers all test condition and request response sequence.

4.Fuzzing input: Now input to test script will be generated as

fuzzing input. Inputs are invalid form of data or random

sequences; those are not same as it is expected for the

application to test the validation.

5. Execution: Test scripts with fuzzed input are executed on

AUT and the report will be generated.

Finally, generated report will be compared with expected test

response, or validation of input with performance measure of

the system. If any flaw or security threats will find, then

system design gets a redesign and adjusted as per needs.

V. CONCLUSION AND FUTURE WORK

With functional requirement verification, software quality

measures are also important. As a non-functional

requirement, quality parameter of software include reliability,

throughput and security are closely coupled with each other.

In the current world, security is the main concern while

developing the application. Any flaws in the application can

be exploited by intruders or attacker as a security hole within

the system. Growing Internet, mobile security issues become

more challenging for preserving user privacy of data as well

as information residing on mobile devices.

In this, we consider two different testing approaches during

testing of mobile application. Both techniques are used for

web based software. We try to frame them together by

considering the limitations. The critical mobile applications

need security framework with security properties

(confidentiality, authentication, no repudiation, integrity)

need to be considered against malicious attack.

The main aims of our framework, to provide identification of

system flaw that leads to violation of security properties as

well as validating effectiveness of valid input to the system.

After finding the security flaw, correct the code and redesign

or adjust the system model as per validation.

http://www.ijerm.com/

Security Framework for Model Based and Fuzzing Testing in Mobile Application

 125 www.ijerm.com

REFERENCES

[1] Luo, Lu. "Software Testing Techniques: Technology Maturation and

Research Strategy." Class Report for (2001).

[2] Bourque, Pierre, and Richard E. Fairley. Guide to the software

engineering body of knowledge (SWEBOK (R)): Version 3.0. IEEE

Computer Society Press, 2014.

[3] P. Amman, J. Offutt, Introduction to Software Testing, Cambridge

University Press, Cambridge, UK, 2008.

[4] D. Hardt, .” RFC6749: The OAuth 2.0 authorization framework”. 2012

[5] Schieferdecker, Ina, Juergen Grossmann, and Martin Schneider.

"Model-based security testing." arXiv preprint arXiv:1202.6118

(2012).

[6] Aaron Wishnick, Ming Chow, “Fuzzing an iOS Application”, Tufts

University, Computer Science, Introduction to Computer Security,

December 13, 2013

[7] OWASP Foundation, OWASP Testing Guide v4,

https://www.owasp.org/index.php/OWASP_Testing_Project accessed

March 11, 2015.

[8] Michael Felderer, Philipp Zech, Ruth Breu, Matthias Buchler,

Alexander Pretschner, “Model-Based Security Testing: A Taxonomy

and Systematic Classification”, SOFTWARE TESTING,

VERIFICATION AND RELIABILITY,2014, pg no. 1-29

[9] Nicholas Penning, Michael Hoffman, Jason Nikolai, Yong Wang.

“Mobile Malware Security Challeges and Cloud-Based Detection”,

2014.

[10] Y. Cifuentes, L. Beltrán, L. Ramírez , “Analysis of Security

Vulnerabilities for Mobile Health Applications” ,World Academy of

Science, Engineering and Technology International Journal of

Electrical, Computer, Energetic, Electronic and Communication

Engineering Vol:9, No:9, 2015

[11] Abdullah Saad AL-Malaise AL-Ghamdi,” A Survey on Software

Security Testing Techniques”, International Journal of Computer

Science and Telecommunications, Volume 4, Issue 4, April 2013, pg

no 14-18.

[12] Robert V. Binder, Anne Kramer, Bruno Legeard, 2014 Model-based

Testing User Survey: Results, 2nd User Conference on Advanced

Automated Testing (UCAAT) in Münich,October 2014.

[13] T. Lodderstedt, M. McGloin, and P. Hunt. RFC6819: OAuth

2.0 threat model and security considerations. 2013.

[14] S. Chari, C. S. Jutla, and A. Roy., “Universally composable security

analysis of OAuth v2.0.” IACR Cryptology ePrint Archive, 2011

[15] R. Abela. HTTP Fuzzer. acunitex.

[16] OWASP. Fuzzing with WebScarab

[17] J. Jacky. “Pymodel: Model-based testing in Python”. In Proceedings of

the Python for Scientific Computing Conference, 2011.

[18] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna. “Enemy of the state:

A state-aware black-box web vulnerability scanner” In USENIX

Security, 2012.

[19] G. Pellegrino and D. Balzarotti, “Toward black-box detection of logic

flaws in web applications” in NDSS, 2014.

[20] C. Schulze, D. Ganesan, M. Lindvall, R. Cleaveland, and D. Goldman.

“Assessing model-based testing: an empirical study conducted in

industry” in Companion Proceedings of the International Conference

on Software Engineering.ACM, 2014.

[21] A. C. Dias Neto, R. Subramanyan, M. Vieira, and G. H. Travassos. “A

survey on model-based testing approaches: a systematic review” In

Proceedings of ACM international workshop on Empirical assessment

of software engineering languages and technologies, 2007.

[22] J. Ernits, R. Roo, J. Jacky, and M. Veanes. “Model-based testing of

web applications” using NModel. Springer, 2009.

[23] J. Ernits, M. Veanes, and J. Helander. “Model-based testing of robots

with NModel” Proc. Microsoft Research, 2008.

[24] G. Maatoug, F. Dadeau, and M. Rusinowitch.,” Model-based

vulnerability testing of payment protocol implementations” in

HotSpot’14-2nd Workshop on Hot Issues in Security Principles and

Trust, 2014.

Ms. Vishruti Desai, completed M.Tech. from VJTI, Mumbai,

currently pursuing my Ph.D. Her research area includes software

engineering, testing, mobile security, mobile computing.

 Dr. Vivaksha Jariwala completed her Ph.D. from Sardar

Vallabhbhai National Institute of Technology, Surat. Her research area

includes information security, wireless sensor networks and software

engineering.

http://www.ijerm.com/

