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A Heuristic Method for The Selection of The
Regularization Parameter in Kernel Regression
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Abstract— A new method and criterion are proposed to find
the best regularization or smoothing parameter, £, in
nonparametric regression by the kernel method on a sample
obtained at points equally spaced. The new heuristic criterion is
based in the skewness coefficient of the regression estimator
derivatives in order of & on all data points, and allows to obtain
a comprehensive tool to construct a practical method to control
the smoothness of the curve, without the usual and more
elaborated criterion based in convergence over the estimator
that have, for example, conditions on kernel functions. With a
simple calculation for a distance, it is possible to obtain the
regularization parameter, 4. The selection of the regularization
parameter must be clearly different if it is aimed to minimize
the error or to calculate the zeros of the regression function.

Index Terms—Heuristic method, Kernel regression,
Nonparametric Regression, Smoothing parameter selection

1. INTRODUCTION

The original idea of kernel estimation was initiated in an
attempt to estimate the density function, d,(x,k), of a

random variable X,
d, (x,h)zj}(x)=(1/nh)ZK((x—xi)/h), (1)
i=1

from a sample (x;, ,x,), of size n, using classical

histograms [1]-[3]. The use of the kernels, K (x) as core

functions depends of a regularization parameter, /4, which for
higher and for smaller values of %, corresponds to a narrower
or wider curve, respectively.

The density estimation is then an average of density
distributions with equal weights. Several kernel functions are
used, some of the simpler ones are: Uniform, Epachinikov,
Biweight, triangular, and Gaussian, among others. In this

work, the Gaussian function is used,
1

77)(2
K(x) =272 2" | 2
due to its properties, in particular, to the fact that it is
continuously and infinitely differentiable.
By using the kernel density estimator of the joint
probability function of the independent variable X and the

dependent variable Y, applied to a set of points
{(xl,y1 )seees (%5 1 )} of dimension #,
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Jy)=
(/)3 (=) ) (=)0

and applying it to the empiric regression estimator,
y(x)=E(Y|X =)=
= _|‘yfy‘x=)c (y)dy = ny(x,y)/f(X)dy,

fly) s
Frx—x (») the Y probability density function conditioned by

3)

“4)

where the joint function probability,

X =x,and f'(x) the marginal density function of X, it will

be possible to obtain the Nadaraya-Watson regression
estimator [4], NW or Kernel regression estimator,

iy ()= 3(3)-

:kzn;yl-K((x—xk)/h) kZH;K((x—xk)/h).

The kernel method applied to regression, or to density
function, always presents some difficulties, because there is
not a simple method to find the best /4, and no evolution was
found in this matter on the last decade. Some known
methods, are for example, the cross-validation or the Plug-in
method [5]-[9], which are based on calculations of values
depending on the properties of the kernel functions, as well as
on the unknown specific density function. Other approaches
have been made defining new asymmetric or not all positive
kernel functions [10]-[18].

The problem of sample size on the regression estimator is
important when, as in most of the cases, the smoothing
parameters should be local, i.e., individualized for each
kernel, and when there is a smaller sample size, an
individualized selection of these parameters, or another
kernel function construction becomes necessary. Moreover, a
sample size that can give enough information to estimate all
necessary regularity parameters must be considered.

This work presents a new heuristic method to find the
optimal smoothing or regularization parameter / for samples
obtained at constant intervals.

“4)

II. LOOKING FOR AN ESTIMATION OF THE OPTIMAL
SMOOTHING OR REGULARIZATION PARAMETER

The criterion presented is based in the study of the
behavior of derivative in order of / in all observed points. It is

applicable to a set of # points, {(xl,yl),...,(xn,yn )}, where
the dependent variable Y was obtained with some error in

constant intervals of valor of the independent variable X, i.e.,

X

1 —X;=a, where a is a positive real constant and
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j=0,...,n—1.This type of data allow the use of symmetric
kernel and constant smoothing parameter % in all kernel
functions simplifying the regression estimator use. There are
many science areas that use this type of data, where the
sample is collected in constants intervals of time or space,
giving applicability of the presented method.

The regression model is y, = f'(x;)+¢;, i =1,...,n with
the error &; as a normal distribution with zero mean, p and
some positive standard deviation o and f(x) is the unknow

function that relates y with x.
The two samples used in this work were generated using

f (x), as one of even degree and another of odd degree

polynomial functions, both with multiple zero points,
because they are not so favorable to obtain good regression
curves. When f'(x) has only one type of monotony, or the

sample error is lower, the method will work better that shown
in examples 1 and 2 below.

A. Example 1
n=40, f(x)=(x-2y-x+5 with & ~N(0,8), and
sample values of x axis from -1.8 to 6 equally spaced.

B. Example 2
n=100, f(x)=(x—2)"-5and & ~N(0,8), and sample

values of x axis from -1.92 to 6 equally spaced.

For data of example 1, regression was calculated for
different values of 4, which are shown in Fig. 1.

(a) h=0.001

ﬁ(x)éo

40

(b) h=0.185
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() h=0.75

ﬁ(x)6o

40

(d) h=25
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Fig. 1. Different steps of nonparametric regression for data
of example 1, where the dashed line corresponds to the

function plot, f (x), and the continuous line to the regression

estimation for the regularization parameter, 4, on the four
indicated cases, (a) #=0.001, (b) ~=0.185, (c) #=0.75, (d)
h=2.5.

As it can be observed in Fig. 1 (a), the "discrete" behavior
to parameters / near zero makes the regression a step

function, the curve becomes as close to points (xi, J/i) , as

intended, simply by decreasing the value of /4, and that is why
the least squares method and kernel regression goes in some
sense against one another. The curve is locally characterized
by the individually of the points, and it does not take into
account the group's behavior. When the parameter has very
high values, Fig. 1 (¢) and (d), points behave as a single group
in the sense that the curve will slowly converge at all points to
the value which characterizes the variable y: the average of
the observed y values. The limit curve, as & goes to infinity, is
a horizontal line as it can easily be observed, by calculation of
the limits on (5). The question of calculating a value of 4,
which is optimal, Fig. 1 (b), lies in understanding the process
of moving from the "discrete" to the "group" zone and how
can the balance between these two areas be measured. The
optimal / that will be obtained, will be a value that achieves
the equilibrium between a smooth, and close enough curve of
the observed points.

It can be easily observed that the dominant behavior of the
evolution of the curve is in the vicinity of each point. The
spaces between the points follow the influence of their
nearest points, as / increases, drawing the complete curve. As

aresult, the derivative of the regression curve oy (x, h) / Ox at
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each point, x;, i=1,..,n, of the sample (for Gaussian

kernels),
oy (x, h)
ox

< X xj—ka
e

measures the smoothing of the regression curve, in three

phases, “discrete”, “transition” and “group” zones:

A. “Discrete” Zone

For a small 4, the slope at observed points extend beyond
the vicinity of each of the sample value of x, with an abrupt
variation of the curve in the middle of each interval between
points. In this interval, the slopes are approximately zero in

all x values observed, and estimated j(x;) values near y,

with i=1,...,n.

B. “Transition” Zone

The optimum £, 2*, can be found in this zone. The slopes
(from the regression line in all the sample values x) evolve to
a state where no rapid changes in the curve exist, i.e., a
smooth regression curve is obtained. It should be noted that
the most important property in this area lies in the fact that the
slopes reached its maximum. From here, values will
continuously decrease. In this zone, as in the above zone, the
estimated values of y in the range of the abscissa of the points
remain close enough to the y corresponding observed values.

C. "Group" zone

After a situation of equilibrium, all regression curve
slopes, at each point, x;, i =1,...,n, evolve to zero but, unlike

the first area, the estimated values of y evolve to the observed
average, moving away, of the observed values, except in
regard to the more central ones.

Also, for all values of %, regressions using extrapolations
are not valid. In fact, the interior points evolve faster in the
value of its derivatives than the outer points, stays near the
derived optimum value before decreasing, as / increases.
Throughout the evolution of 4, from near zero to infinity, the
outer points cannot even reach the expected slope,
converging back to zero before they get there.

The derivative of the regression curve at each observed
sample value of x, is therefore a good tool to control the
smoothness of the regression curve, and hence to find a way
to reach the optimum 4 *.

Let D(4) be the vector of all derivatives of the kernel
regression estimator, ﬁ(x,h) on each of the observed value

of the variable X, x=(x,,...,x,),
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o
D(h)=D(h|x,y)=| —— » (6)

where y = (y;,..., »,)-
Fig. 2 presents, for the example 1, the skewness of the
vector D(%) in function of %, and two function of errors,

&,(h) and ¢ ,(h), that are respectively the mean square error

between the estimator of the observed values and of the
function f (x), used to generate the sample,

n 2

2= (5(x)-7) . (1)
=1
and,
1 n 2
gf(h):;Z(jz(xi)_f(xi)), (8)

j=1
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Fig. 2. Skewness of the vector D(%)in function of A, for
example 1. The long and small dashed line corresponds to the
two function of errors, &,(h) and ¢, (%), of the mean square

error between the estimator and the observed values, and of
the function f (x), respectively.

Fig. 2 shows the first and absolute maximum of skewness
function near the minimum of function &, (k). The skewness

coefficient of a variable X is the third moment of X divided by
the third power of the second moment of X.

The curve of D(%) variance is similar for any sample and

it can be observed that the maximum value represents the
change from the “discrete” zone to the “transition” zone,
slowly decreasing thereafter to zero. The curves of skewness
and kurtosis have values without much variation in the same
"discrete" zone, where the variance grows quickly to its
maximum, and then starts to present different behaviors in
the "transition" area. Already in the "group" zone, the
skewness slowly converges to zero and to some positive
value for the kurtosis. What is expected to find for optimal 4
is a smooth regression curve, which is represented by a vector

D(#) with different consecutive component values but not

very distant from each other. It is therefore necessary to
balance these components, representing slopes, between
asymmetry / information and symmetry / kurtosis, as they
should represent the maximum sample information, which is
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reflected in having the maximum absolute asymmetry, with
the smaller possible kurtosis.

Thus, the proposed criterion is that the optimal value of 7 is
the one within the "transition" zone that gives D(%) a greater

asymmetry (skewness) in the absolute value, to the lowest
kurtosis. The "transition" zone can be located in order to stay

after the value of A, that maximizes the variance of D(%),

and for almost cases the first absolute maximum of the
skewness corresponds to the optimal /.

Fig. 3 presents, for the example 2, the skewness of the
vector D(%) in function of 4, and two function of errors,

&,(h) and &, (/). In this sample, with a larger n, the first

absolute maximum of the skewness function is located before
the minimum of function &, (%), resulting of the higher error

used generating data, and the D(%) skewness function favors

the collection of information on sample data, producing a
more discrete regression as it can observed in Fig. 4. If data
was generated with less error, the optimal 2 would be more
near the minimum of &, (h).
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Fig. 3. Skewness of the vector D(#4)in function of A, for
example 2. The long and small dashed line corresponds to the
two function of errors, £,(h) and ¢, (%), of the mean square
error between the estimator and the observed values, and of
the function f (x), respectively.

y(x)30¢ ’
. 200 -
08 . . u‘/’f

Fig. 4. Nonparametric regression for data of example 2,
where the dashed line corresponds to the function plot,

f (x), and the continuous line to the regression estimation

for the regularization parameter, #=0.4.
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III. HEURISTIC METHOD

In conclusion, this work presents a heuristic method to
obtain an optimal regularity parameter, 4* for kernel
regression on a sample with equally spaced values.

Let j/(x) be the kernel estimator applied to a set of points
{(xl,yl),...,(xn,yn)}, where X, —Xx;=a, and a is a
positive real constant and j=0,..,n—1. Also, & is the
regularization parameter and K (x) the kernel function

differentiable associated with the estimator. The optimum
value of 4, h* is the value that maximizes the absolute value
of the function that gives the skewness coefficient of the
vector,

6)7(x,h)
ox

' 6)7(x,h)

D(h) =D(h|x,y) = e T

»(10)

x=x X=x,

for values of /4 in the “transition” zone that are greater than
the maximum of variance of the same vector D(%).
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