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An Adjustable State Estimator for Discrete-Time
Nonlinear Stochastic Systems

Sie Long Kek, Kim Gaik Tay, Sy Yi Sim

Abstract—In this paper, an adjustable state estimator is
introduced for estimating the dynamics of a discrete-time
nonlinear system that is disturbed by a sequence of random
noises. In our approach, the Kalman filtering theory, which is
employed to estimate the dynamics of the linear system, is
completed with adding the adjusted parameters into the model
used. In this way, the differences between the real plant and the
model used can be measured iteratively. On the other hand, the
output, which is measured from the real plant, is fed back into
the model used in order to update the sequence of the optimal
state estimate in each iteration step. When the convergence is
achieved, it is found that the iterative solution approaches to the
true optimal solution of the original estimation problem in spite
of model-reality differences. In additional, the convergent
property of the adjustable state estimator is also given. For
illustration, three examples are studied and the results obtained
show the efficiency of the approach proposed.

Index Terms—Adjustable state estimator, iterative solution,
Kalman filtering theory, model-reality differences.

I. INTRODUCTION

Estimating the state dynamics accurately from a nonlinear
dynamical system that is disturbed by Gaussian white noise
sequences is a challenging task. This estimation is subject to
the fluctuation behavior appeared in the dynamical system
that gives an unpredictable response, and makes the
dynamical system even more complex. In this point of view,
the Kalman filtering theory, which consists of the
measurement and time updates, is proposed to give the
optimal state estimate for the linear stochastic dynamical
systems [1]-[3].

The idea of the Kalman filtering theory is then extended to
nonlinear dynamical systems since most of engineering
problems are nonlinear in nature, see for examples [4]-[6]. In
implementation of the extended Kalman filter (EKF), the
Jacobian matrices, which are derived on the state and the
measurement output equations, are evaluated with the current
predicted states. This linearization would not give the optimal
state estimate and the divergence could be happened towards
the wrong estimated solution [7]-[8].
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To improve the EKF, the unscented Kalman filter (UKF) is
investigated [9]. In such study, the probability density
function is approximated by a deterministic sampling of
points using the unscented transformation [10]-[11]. The
UKEF is more robust and more accurate than the EKF for the
estimation errors. However, the UKF does not perform well
for the bad initial state and its robustness is less than the
optimization based state estimators, for instance, the moving
horizon estimator [12]. Practically, state estimation with the
Kalman filtering theory has been widely applied in
engineering and sciences, which covers target tracking [13],
robotic manipulators [14], reservoir modeling [15],
biomedical applications [16], sensor data [17], and control
systems [18]-[19].

In this paper, we propose an adjustable state estimator,
which is based on the association of the Kalman filtering
theory and the principle of model-reality differences, for
nonlinear estimation problem of discrete-time stochastic
dynamical system. In our approach, the adjusted parameters
are introduced into the linear dynamical system, both for state
and output equations. During the computation procedures, the
output from the real plant is measured, in turn, updates the
model trajectory iteratively. In this way, the differences
between the real plant and the model used are calculated in
each iteration step. Consequently, when the convergence is
achieved, the optimal solution of the model used approaches
to the true optimal solution of the original estimation problem,
in spite of model-reality differences. On this basis, an iterative
algorithm of the adjustable state estimator is then established
for the estimation problem of discrete-time nonlinear
stochastic dynamical system.

The rest of the paper is organized as follows. In Section 2,
the estimation problem of a general discrete time nonlinear
stochastic dynamical system is described. For simplicity, a
linear model-based estimation problem, which is added with
the adjustable parameters, is formulated. In Section 3, an
expanded optimal estimation problem, which takes into
account state estimation and parameter estimation, is
introduced. The resulting iterative algorithm that is based on
the Kalman filtering theory and the principle of model-reality
differences is then derived for solving the nonlinear
estimation problem. In Section 4, the convergence analysis of
the resulting algorithm is given. In Section 5, three illustrative
examples are studied for the efficiency. Finally, some
concluding remarks are made.

II. PROBLEM STATEMENT

Consider a dynamical system that is governed by the
general difference equations given below.
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x(k+1) = f(x(k),k)+Go(k) (1a)

(k) = h(x(k), k) +1(k) (1b)

where  x(k)eR", k=01, ,N, and y(k)eR?,
k=0,1, ,N, are, respectively, the state sequence and the

output sequence, while w(k)eR?, k=0,1, ,N-1, and
nk)eR’, k=01,

noise sequences with zero mean and their covariance matrices

, NV, are the stationary Gaussian white

are, respectively, given by O, and R, . Here, O, € R"™

and R, € R are positive definite matrices, and G € R™

is the process noise coefficient matrix. Moreover,

fiR"xR —>R" represents the plant dynamics and

h:R" xR — R? is the output measurement channel.
The initial state is

x(0) = x,

where x, € R” is a random vector with mean and covariance

are, respectively, given by
E[xg]=%, and E[(x —x))(x, _)_‘o)T] =M,.

Here, M, € R™" is a positive definite matrix. It is assumed

that initial state, process noise and measurement noise are
statistically independent.

Suppose the state mean propagation and the corresponding
output measurement are given below.

X(k+1)= f(x(k),k), X(0) =X,
V(k) = h(x(k), k)

(2a)
(2b)

where x(k)e®R", k=0,1, ,N, is the expected state

sequence with the state error covariance M, (k) e R, and
y(k)eR?, k=0,1, ,N, is the expected output sequence
with the output error covariance M (k) € R”*”. Then, an

optimal sequence of the state estimate, denoted by
X(k)eR", k=0,1, ,N-—1, shall be determined over the

dynamical system (2) such that the following weighted
mean-square error (MSE) is minimized:

minJ,_ _ (x
x(k) mse ( )

N
= > L) =% ()" (M ()™ (x(k) ~ X (k)
k=0
+ () =3 (k)" (M, (k)™ (v(k) - 3(k) 3)

It is assumed that all functions in (1a), (1b), (2a), (2b) and (3)
are continuously differentiable with respect to their respective
arguments.
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This problem is regarded as a nonlinear estimation problem
and is referred to as Problem (P).

In the presence of the random disturbances, the entire
trajectory of the state dynamics and the output behavior in
Problem (P), which are given by (la) and (1b), cannot be
obtained accurately. Due to the complex structure of
Problem (P), a simplified linear dynamics model is
formulated from (2) given by

X(k+1) = A% (k) + oy (k) , %(0) =X,
(k) = Cx (k) + o, (k)

(4a)
(4b)

such that the weighted MSE in (3) is minimized, where
a, (k) e R", k=01 ,N-1, and a,(k) e R?,
k=0,1, ,N, are introduced as the adjustable parameters.

Here, AeR™" and C e R’ are, respectively, the state
transition matrix and the output coefficient matrix, where they
can be obtained from the linearization of the plant dynamics
and the output measurement channel, respectively, at the
known initial state.

This problem is a linear estimation problem and is referred
to as Problem (M).

Notice that by solving Problem (M) iteratively, we can
obtain the true optimal state estimate of ~ Problem (P). This
way can be done because of taking into account the
differences between Problem (P) and Problem (M) by the
adjusted parameters. On the other hand, the output that is
measured from the original problem is fed back into the model
in order updates the optimal solution of the model repeatedly.
Follow from this updating step, the optimal solution of
Problem (M) approximates to the true optimal solution of
Problem (P), in spite of model-reality differences, once the
convergence is achieved.

III. INTEGRATED APPROACH WITH MODEL-REALITY
DIFFERENCES

Now, let us introduce an expanded optimal estimation
problem, which is referred to as Problem (E), given below.

r;}ikl; I nse (X)

N
= > L ek =X (k)" (M ()™ (x(k) ~ X (k)

k=0
+L (k)= 7)) (M, (k)™ (y(k) - (k)
+1n X(k)-z(k)
subject to 5)
¥(k+1) = Ax (k) + (k) , ¥(0) =X,
y(k) = CX(k) +a, (k)
Az(k)+ oy (k) = f(z(k), k)
Cz(k)+a, (k) = h(z(k),k)
z(k) = X (k)

where z(k)eR", k=0,1,
the optimal state sequence in the state estimation problem
from the respective signal in the parameter estimation, and

,NV, is introduced to separate
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denotes a usual Euclidean norm. The term of
%”1 x(k)—z(k) * with r, € R is introduced to improve the
convexity and to facilitate the convergence of the resulting
iterative algorithm. It is important to note that the algorithm is
designed such that z(k)=Xx(k) is satisfied upon termination
of the iterations, assuming that the convergence is achieved.
The state estimate z(k) is used for the computation of
parameter estimation and the matching scheme, while the
corresponding state estimate x (k) will give the optimal state

sequence for state estimation. Thus, state estimation and
parameter estimation are mutually interactive.

A. State estimation

By taking the first-order necessary condition dJ

mse

(x)=0
in (5) for arbitrary dx(k), the coefficients must vanish. After

carrying out some algebraic manipulations, the optimal state
sequence is yielded as follows:

2(k) =X (k) + K ; (k)(y(k) - y(k)) (©6)
where
K, (k)y=M (k)C"M (k)" (7

is the filter gain matrix. This state information improves the
expected state sequence and the corresponding measured
output sequence given in (4a) and (4b), where the
deterministic dynamic system is propagated to generate the
following optimal state sequence and the corresponding
measured output sequence,

x(k+1) = Ax(k)+ K, () (y(k) - y(k)) +a, (k)  (8a)
¥(0)=7,
Y(k)=Cx(k) +a, (k) (8b)

Here, K,(k)e®R"™” is the predictor gain matrix whose

computation is given by

K, (k)= AM (k)C"M (k)™ (9a)
M, (k)=CM (k)C" +R, (9b)

M (k+1)=AM (k) A" - K, (k)M ,(k)K , (k)"
+GO,G", M (0)=M, (9¢)

where M, (k) e R”*” and M (k) e R"™" are positive definite
matrices [7]-[8], [20]-[21].
Remarks:

(a) The filter gain K, (k), which minimizes the weighted

MSE of the state estimation, and the predictor gain
K, (k) converge asymptotically to a unique constant

gain given, respectively, by K, and K, as ktends to .

(b) The state error covariance M, (k) and the output error

covariance M (k) converge asymptotically to a unique
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constant error covariance given, respectively, by M

and M , as k tends to oo.

B. Parameter estimation

The separable variable
z(k) =x(k)

uses the estimated parameter to match the nonlinear dynamics
during each iteration step. On this basis, the differences
between the plant dynamics, including the output behavior, in
Problem (P) and the model used in Problem (M) can be
calculated repeatedly by

oy (k) = f(2(k), k) = Az(k)
oy (k) = h(z(k), k) = Cz(k)

(10a)
(10b)

It is noticed that the model used is updated repetitively so as
the converged solution approaches to the true optimal
solution of Problem (P), in spite of model-reality differences.

C. lterative algorithm

From the discussion above, state estimation and parameter
estimation are integrated for solving the nonlinear estimation
problem of the stochastic dynamical system based on the
proposed linear estimation model. Here, we summarize the
solution method as an iterative algorithm given below.

Algorithm 1: Iterative algorithm
Data 4,C, G, My, N, O, Rn’ Xg» %, k., f, h. Note that

A4 and C might be obtained from the linearization of f
and /4, respectively.

Compute K, (k), M, (k) and M, (k) from (9a), (9b)
and (9c), respectively.

Step 2 Assume o (k) =0 and a, (k) =0. Calculate the state

estimate sequence x(k) and the corresponding output

Step 1

sequence y(k) from (8a) and (8b) with the given
initial condition X(0)=x,.Set i =0, z(k)* = x(k)".
Compute the nonlinear dynamics of f(z(k)',k) and
h(z(k)',k) from (2a) and (2b).

Step 3

Step 4 Compute the adjustable parameters o, (k) and
a, (k)" from (10a) and (10b). This step is called the

parameter estimation step.
With the specific al(k)i and az(k)i , compute the

new x(k)' and the new (k) from (8a) and (8b).
This step is called the state estimation step.

Step 6 Test convergence of the optimal sequence of the state
estimate for Problem (P). To provide a mechanism for
regulating convergence, a simple relaxation method is
employed as given below:

Step 5

2(k)™ = 2(k) + ke, (R () = 2(k)") (11
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where k, €(0,1] is a scalar gain. If z(k)™ = z(k)
within a given tolerance ¢, stop; else set i =i+1 and
repeat from Step 3.

Remarks:
(@) K,(k), M,(k) and M (k) are computed off-line in

Step 1 for the optimal sequences of the state estimate and
the measured output. Their values would not change
during the iterations.

(b) The convergence of z(k) in Step 6 is verified by

comparing the following 2-norm with the given
tolerance

(12)

N
I S ||2: \/ZH z(k)i” —Z(k)i Hz

k=0

(c) The value of scalar gain k, is set to 0.9 as a default

value, and this value can be chosen from 0.1 to 0.9 for an
optimal number of iteration.

IV. CONVERGENCE ANALYSIS

In this section, our main aim is to show that, under the
principle of model-reality differences, the adjustable state
estimator can identify the nonlinear dynamics of stochastic
system.

To obtain our main result, the following assumption is
needed:

Assumption 1

(a) The state estimate sequence )?*(k) and the

corresponding measured output sequence )7*(k) of

Problem (P) exist and they are unique.
(b) The functions f and /4 are continuously differentiable.

In addition to this, we have the following theorem:

Theorem 1
Under Assumption 1 and assuming the convergence is

achieved, the converged state estimate x“(k) and the

corresponding measured output y°(k) of Problem (M) are

the optimal solution of Problem (P).

Proof
Consider the necessary condition, that is dJ, ,(x) =0, the
nonlinear state estimate and the output measurement are given

by

mse

X (k+D) = f& (k). + K, (k) -5 (k)
X (0)=7x,
¥ (k)= h(x"(k),k).

(13a)
(13b)

Meanwhile, the converged optimal state estimate and the
converged output measurement are given as follow:
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X(k+1) = Ax“ (k) + K, (k)(y(k) = (k) + oy (k) ,

x°(0)=X, (14a)

Y (k) =Cx“ (k) +a, (k) (14b)
where

a, (k) = f(z(k), k) — Az(k) (152)

o, (k) = h(z(k),k)—Cz(k) (15b)

This implies that the following results are valid:
X(k+1) = f(x°(k),k)+ K, (k)(y(k) =y (k) ,

X(0) =7,

Ve (k) = h(x* (k). k)

(16a)
(16b)

where z(k)=Xx°(k) is satisfied as the convergence is

achieved.

Comparing (16a) and (16b) with (13a) and (13b), we can
conclude that these state estimate and output measurement are
equivalent. Thus, we obtain

X(ky=X (k) and (k)= (k).

This completes the proof.

V. ILLUSTRATIVE EXAMPLES

For illustration, three examples are studied. Their
simplified models, which are added with the adjustable
parameters, are constructed for solving the original estimation
problems. The nonlinearity of each example is different. The
plant dynamics of the first and the third examples are rational
terms with one-dimensional sinusoidal for the first example,
and two-dimensional for the third example, while the plant
dynamics of the second example is a two-dimensional bilinear
form. The output measurement of the first example is
quadratic term, and the output measurements are linear form
for the second and the third examples. Their simulation and
graphical results are given afterward.

A. Example 1

Consider a nonlinear dynamical system that is disturbed by
the stationary Gaussian white noise sequences [22]-[23]
given below:

x(k +1) = 0.5x(k) + 25x(k)(1 + (x(k))*) ™
+8cos(1.2k) + w(k)

y(k) = 0.05(x(k))* +n(k)

where the initial state x(0) = x, is arandom vector with mean
of 0.1 and unit variance, (k) and 7n(k) are Gaussian white

noise sequences with zero mean and unit variance. This
problem is referred to as Problem (P), while its simplified
model, which is referred to as Problem (M), is given below:
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X(k+1)=0.5%(k)+ o, (k)
F(k) = 0.015(k) +a, (k)

with the initial condition x(0)=0.1, and the adjustable
parameters o, (k) and a,(k), for £ =0,1,...,50.

The simulation result is shown in Table 1, where there is
an 83 percent of the error reduction after performing the
algorithm proposed. The final MSE, which is 0.3870, is less
than the MSE of the EKF, which is 1.3701. The nonlinear
dynamics of the plant and the state estimate are shown in
Fig. 1, and the output sequence both for the original output
and the model output are shown in Fig. 2. The trajectories of
state and output are fluctuated seasonally because of the
attending of the cosine term in the real plant, where the values
of the output measurement are always positive.

Table 1. Simulation result, Example 1

Number of Elapsed Initial Final
iteration time MSE MSE
55 0.235294 2.3300 0.3870

state

matrices given by 0, =107, and R, = 107", Let us define

this problem as Problem (P) and the simplified model as
Problem (M) which is given below:

X, (k+1) = 0.91%, (k) +1.35%, (k) + o, (k)
%, (k+1) = —0.11%, (k) + 0.15%, (k) + o (k)
(k) =x, (k) +a,(k)

with the initial condition

%(0)=135, %,(0)=0.11, k=0,1,...,80

and the adjusted parameters o (k) = (ar;; (k) ocu(k))T and

a, (k).

In Table 2, the simulation result shows that there is a 98
percent of the error reduction after running the algorithm
proposed. The final MSE of 0.0028 is superior to the MSE of
the EKF that is 0.0041. The trajectories for the plant dynamics
and the state estimate are shown in Fig. 3, where the state
estimate tracks the plant dynamics closely. The trajectories
for the original output and the model output, where the
variation occurs around 0.12, are shown in Fig. 4.

Table 2. Simulation result, Example 2

L
0 5 10 15 20 25 30 35 40 45 50
time

autput

Fig. 2. Output trajectories, Example 1

B.  Example 2

Consider the following nonlinear dynamical system
[24]-[25]:
X (k+1) = 0.8x, (k) + x; (k)x, (k) + 0.1+ 0.01e, (k)
Xy (k+1) =1.5x, (k) —x,(k)x, (k) + 0.1+ 0.01w, (k)
y(k)=x,(k)+0.0In(k)

where the initial state x(0)=x, has a mean vector of
X, =(1.35,0.11)" and a covariance matrix of M, =1, ,

co(k):(a)l(k),coz(k))T and 7n(k) are zero mean Gaussian

white noise sequences with their respective covariance
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Number of | Elapsed Initial Final
iteration time MSE MSE
78 0.116620 0.1282 0.0028

L L
0 10 20 30 40 50 60 70 80
time

Fig. 3. State trajectories, Example 2

015

0.14

0.13
o %
£ 042 [fY

¥
011

01l ! |

0.09 L I L I L L L

Fig. 4. Output trajectories, Example 2

C. Example 3

Consider a nonlinear dynamical system [26] in Problem (P)
given below:

x, (k+1) = 0.99x, (k) +0.2x, (k)
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0.5x, (k)
—
1+ (x, (k)
y(k) = x,(k) = 3x, (k) +7(k)

X, (k+1) = —0.1x, (k) + o(k)

where the initial condition x(0) = x, is a random vector with

mean and covariance are, respectively, given by

_ 1.0 00
Xo = and M = .
0.8 0 1

The stationary Gaussian white noise sequences are (k) and
n(k) with zero mean and their respective covariance

matrices are given by

00
Qw:O | and R, =1.

The simplified model in Problem (M) is given below:

X, (k+1) = 0.99%, (k) + 0.2, (k) + cty (k)
%, (k+1) = =0.1%, (k) + 0.95%, (k) + o (k)
Y(k) =X (k)= 3%, (k) + o, (k)

with the initial condition

%(0)=1.0, %(0)=08, k=0,1,...20

and the adjusted parameters (k) = (o, (k) ozlz(k))T and
o, (k).

Table 3 shows the simulation result, where there is a 46
percent of the error reduction done by the algorithm proposed.
Furthermore, the final MSE is preferred since the value of
0.2863 is smaller than the MSE of the EKF with 0.4468. The
dynamics of the plant and state estimate are shown in Fig. 5,
where the state estimate tracks the plant dynamics slightly.
The output behaviors for the original output and the model
output, which are similar equivalently, are shown in Fig. 6.

Table 3. Simulation result, Example 3

Number of | Elapsed Initial Final
iteration time MSE MSE
37 0.032799 0.5293 0.2863

state

Fig. 5. State trajectories, Example 3

80

output

Fig. 6. Output trajectories, Example 3

VI. CONCLUDING REMARKS

In this paper, an adjustable state estimator was discussed
for solving the nonlinear estimation problem of the
discrete-time stochastic dynamical systems. By introducing
the adjusted parameters into the simplified linear
model-based estimation problem, the differences between the
real plant and the model used could be taken into account
during the computation procedure. In this way, the real output
is measured and then it is fed back into the model used.
Therefore, the trajectories of model and output of the linear
model-based estimation problem are updated repeatedly.
Consequently, the iterative solution converges to the true
optimal solution of the original estimation problem despite
model-reality differences when the convergence is achieved.
For illustration, three examples were studied and the results
show the efficiency of the algorithm proposed. In conclusion,
the applicable of the algorithm proposed to nonlinear
estimation problem is highly recommended.
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