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Abstract— The paper; discuss the concept of dynamically
estimating and building the model process using
association rule model, scanning itemsets with their
counts and design a novel, efficient, dynamic mining
algorithm. Enhancing (ARBSI) will not require
rescanning the original database after collecting the data,
even if a number of transactions have been newly
inserted, and this will work regardless of the support
value used and regardless of the confidence value used.
Enhancing (ARBSI) can work in both dynamic and
conventional form, this is more efficient and will reduce
the time when its performance is compared with the
previous techniques used, in such away as: It will know
the number of items used from the last process after
normalization sub-process which will reduce the time for
scanning each transaction, It will know the types of
modification insert, update, and/or delete, In case there is
an new inserted record Enhancing (ARBSI) can translate
this record to numeric using dummy table for attribute
without duplicate (especially for nominal values)

Index Terms— Data mining, stream data mining, insert,
update, delete.

I. INTRODUCTION

Data mining is the task of discovering interesting and hidden
patterns from large amounts of data where the data can be
stored in databases, data warehouses, OLAP ( on line
analytical process ) or other repository information [1]. It is
also defined as knowledge discovery in databases (KDD) [2].
[3] Data mining involves an integration of techniques from
multiple disciplines such as database technology, statistics,
machine learning, neural networks, information retrieval, etc.
Data mining process is a step in Knowledge Discovery
Process consisting of methods that produce useful patterns or
models from the data [3]. In some cases when the problem is
known, correct data is available as well, and there is an
attempts to find the models or tools which will be used, some
problems might occur because of duplicate, missing,
incorrect, outliers values and sometimes a need to make some
statistical methods might arise as well. [4] Explained the
KDD procedures, in a way to help us focus on data mining
process. It includes five processes: 1) Defining the data
mining problem, 2) Collecting the data mining data, 3)
Detecting and correcting the data, 4) Estimating and building
the model, 5) Model description, and validaion.while [5]
discuss Estimating and Building the Model as: This process
includes four parts: 1) select data mining task, 2) select data
mining method, 3) select suitable algorithm 4) extract
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knowledge. Many Data mining techniques have been
developed over the last 50 years. Depending on the type of
databases processed, these mining approaches may be
classified as working on transaction databases, relational
databases, and multimedia databases, among others. On the
other hand, depending on the classes of knowledge
consequent, the mining approaches may be classified as
finding association rules, classification rules, and clustering
rules [6], among others. From past research, it is clear that
association rules in transaction databases are the most
common in data mining [7]

In previous research, mining association rules algorithms
form transactions were proposed, most of which were
executed by scanning single items first, then scanning with
two items, and this was repeated, continuously adding one
more item each time, until some criteria were met. These
algorithms are designed to work with static database.
However In real-world applications, new transactions are
usually inserted into databases, and designing a mining
algorithm that can maintain association rules as a database
grows is thus critically important. One application of data
mining is to induce association rules from transaction data,
such that the presence of certain items in a transaction will
imply the presence of certain other items. To achieve this
purpose, Agrawal and his co-workers proposed several
mining algorithms based on the concept of large itemsets to
find association rules in transaction data [8], [9][10]. They
divided the mining process into two phases. In the first
phase, candidate itemsets were generated and counted by
scanning the transaction data. If the count of an itemset
appearing in the transactions was larger than a pre-defined
threshold value (minimum support), the itemset was
considered as a large itemset. Itemsets containing only one
item were processed first. Large itemsets containing only
single items were then combined to form candidate itemsets
containing two items [11]. This process was repeated until
all the large itemsets have been found. In the second phase,
association rules were induced from the large itemsets found
in the first phase. All possible association combinations for
each large itemset were formed, and those with calculated
confidence values larger than a predefined threshold
(minimum confidence) were given out as association rules.
This paper is closely related to dynamic data mining, more
specifically, to Association Rules. The paper is divided into
five sections. Section 2 discusses, Dynamically Estimating
and Building the Model Process Using Association Rules.
Section 3 presents Dynamic Association Rules Based on
Scanning the Itemsets Enhancing (ARBSI).while Section 4
presents Illustrative Examples, at the end conclusion.

II. DYNAMICALLY ESTIMATING AND BUILDING THE
MODEL PROCESS USING ASSOCIATION RULES

The original association rules may become invalid, when
new transactions are added to databases, or new valid rules
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may appear in the resulting updated databases
[12][13][14][15]. In these cases, mining algorithms must
re-process the entire updated databases to find final
association rules. This will cause two problems: Algorithms
do not, however, use previously mined information and
require rescanning the database which cost nearly twice the
computational time to mine the databases. If new transactions
appear often and the original databases are large, these
algorithms are thus inefficient in maintaining association
rules.[16] .Transactions databases grow over time in
real-world  applications, which means re-evaluated
association rules mined because new association rules may be
generated and old association rules may become invalid when
the new entire databases are considered. Apriori [8] and DHP
[7] solved this problem by re-processing entire new databases
when new transactions are inserted into the original databases.
These algorithms have two disadvantages: First, increasing
the computation time for each insert / update and/or delete
transaction. If the original database is large, much
computation time is wasted in maintaining association rules
whenever update transactions are generated. Second,
information previously mined became meaningless [17].
Nassereddin [17] proposed several mining algorithms based
on the concept of estimating and building the model process
using association rule model, scanning itemsets with their
counts and design a novel, efficient, static mining algorithm.
(ARBSI) will not require rescanning the original database
after collecting the data, even if a number of transactions have
been newly inserted, and this will work regardless of the
support value used and regardless of the confidence value
used. (ARBSI) can work in conventional form, this is more
efficient and will reduce the time when its performance is
compared with the previous techniques used, in such away as:
It will know the number of items used from the last process
after normalization sub-process which will reduce the time for
scanning each transaction, It will know the types of
modification insert, update, and/or delete, In case there is an
new inserted record (ARBSI) can translate this record to
numeric using dummy table for attribute without duplicate
(especially for nominal values) .

The importance of dynamic estimating and building
process becomes essential due to the time consumption
problem. Many researchers tried to solve these problems.
Such as The Fast Update Algorithm (FUP) [12], Pre-large
itemsetes [18] and Record Deletion Based on the Pre-Large
itemsetes [19] which will be discussed in next Section s. They
provided solution for the insert operation but failed to do the
same for the other two cases namely update and delete.

A. The Fast Update Algorithm (FUP)

Cheung et al. proposed the FUP algorithm to incrementally
maintain association rules when new transactions are inserted
[12] [13]. Using FUP, large itemsets with their counts in
preceding runs are recorded for later use in maintenance.
When new transactions are added, FUP first scans them to
generate candidate 1-itemsets (for the new transactions), and
then compares these itemsets with the previous ones. FUP
partitions candidate 1-itemsets into two parts according to
whether they are large for the original database. If a candidate
1-itemset from the newly inserted transactions is also among
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the large 1-itemsets from the original database, its new total
count for the entire updated database can easily be calculated
from its current count and previous count since all previous
large itemsets with their counts are kept by FUP. Whether an
original large itemset is still large after new transactions are
inserted is determined from its support ratio as its total count
over the total number of transactions.

By contrast, if a candidate 1-itemset from the newly
inserted transactions does not exist among the large
1-itemsets in the original database, one of two possibilities
arises. If this candidate 1-itemset is not large for the new
transactions, then it cannot be large for the entire updated
database, which means no action is necessary. If this
candidate 1-itemset is large for the new transactions but not
among the original large 1-itemsets, the original database
must be re-scanned to determine whether the itemset is
actually large for the entire updated database.

Using the processing plans mentioned above, FUP is
thus able to find all large 1-itemsets for the entire updated
database. After that, candidate 2-itemsets from the newly
inserted transactions are formed and the same procedure is
used to find all large 2-itemsets. This procedure is repeated
until all large itemsets have been found. On the other hand,
although the FUP algorithm focuses on the newly inserted
transactions and thus saves much processing time by
incrementally maintaining rules, it must still scan the original
database to handle, when a candidate itemsets is large for new
transactions but is not recorded in large itemsets already
mined from the original database. This situation may occur
frequently, especially when the number of new transactions is
small. In an extreme situation, if only one new transaction is
added each time, then all items in this transaction are large
since their support ratios are 100% for the new transaction. In
additional to the problem of being not flexible (for example
when the support value changed that means the FUP
technique will be meaningless). Any way the technique start
after static association rules mining (after scanning and
finding the large itemsets and dependent on the support value
from the beginning.

B. Pre-large Itemsets

In the Pre-large algorithm [18], the large itemsets with their
counts in preceding runs are recorded for later use in
maintenance. As new transactions are added, the proposed
algorithm first scans them to generate candidate 1-itemsets
(only for these transactions), and then compares these
itemsets with the previously retained large and pre-large
1-itemsets. It partitions candidate 1-itemsets into three parts
according to whether they are large or pre-large for the
original database. If a candidate 1-itemset from the newly
inserted transactions is also among the large or pre-large
1-itemsets from the original database, its new total count for
the entire updated database can easily be calculated from its
current count and previous count since all previous large and
pre-large itemsets with their counts have been retained.
Whether an originally large or pre-large itemset is still large
or pre-large after new transactions have been inserted is
determined from its new support ratio, as derived from its
total count over the total number of transactions.

On the contrary, if a candidate 1l-itemset from the
newly inserted transactions does not exist among the large or
pre-large 1-itemsets in the original database, then it is
absolutely not large for the entire updated database as long as
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the number of newly inserted transactions is within the safety
threshold. In this situation, no action is needed. When
transactions are incrementally added and the total number of
new transactions exceeds the safety threshold, the original
database is re-scanned to find new pre-large itemsets in a way
similar to that used by the FUP algorithm.

On the other hand, although the Pre-large Itemsets
algorithm focuses on the newly inserted transactions and thus
saves much processing time by incrementally maintaining
rules, it must still scan the original database to handle when
transactions are incrementally added and the total number of
new transactions exceeds the safety threshold; the original
database is re-scanned to find new pre-large itemsets in a way
similar to that used by the FUP algorithm.

Another disadvantage is if the number of newly
inserted transactions is less than the safety threshold, no
action is done in this case, this situation may occur frequently,
especially when the number of new transactions is small. In an
extreme situation, if only one new transaction is added each
time, then this transaction will not be maintained until safety
threshold are reach. The algorithm calculates the safety
threshold by the equation:

t < —(S; _?)d (1)

Where

d : the number of transactions in D;

t : the number of transactions in T;

S; : the lower support threshold for pre-large itemsets;

S, : the upper support threshold for large itemsets, Su >SI;

This algorithm depends on the values of S, and S,
which will constrain the dynamic run, whether they are large
or small; (the distance between them large or small). Another
point is that the value of S, depend on what value (This value
may change the results of dynamic run).In additional to the
problem of being not flexible (for example when the support
value changed, is means the Pre-large Itemsets technique will
be meaningless). Also the technique start after static
association rules mining after scanning and finding the large
itemsets and dependent on the support value from the
beginning.

C. Record Deletion Based on the Pre-Large

Hong et al [19] proposed an algorithm that maintains a
generalized association rules based on the concept of
pre-large itemsets [18] for deleted data. The concept of
pre-large itemsets is used to reduce the need for rescanning
original databases (does not need to rescan the original
database until a number of transactions have been deleted) to
save maintenance costs and time.

On the other hand, although the Record Deletion
Itemsets algorithm focuses on the newly deleted transactions
and thus saves much processing time by maintaining rules, it
must still scan the original database to handle when
transactions are incrementally deleted and the total number of
delete transactions exceeds the safety threshold; the original
database is re-scanned to find new pre-large itemsets in a way
similar to that used by the FUP algorithm.
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Another disadvantage is if the number of newly
deleted transactions is less than the safety threshold, no action
is done in this case, this situation may occur frequently,
especially when the number of deleted transactions is small.
In an extreme situation, if only one new transaction is deleted
each time, then this transaction will not be maintained until
safety threshold are reached. The algorithm calculates the
safety threshold using equation 1; this technique depends on
the values of Su and S1 which will constrain for the dynamic
run, whether they are large or small. Another point is that the
value of S; depend on what value. In additional to the problem
of being not flexible (for example when the support value
changed that means the Pre-large Itemsets technique will be
meaningless). Also the technique start after static association
rules mining (after scanning and finding the large itemsets and
dependent on the support value from the beginning.

III. DYNAMIC ASSOCIATION RULES BASED ON SCANNING
THE ITEMSETS ENHANCING (ARBSI)

Although the FUP algorithm [12] and Pre-large Itemsets
algorithm [18] focused on the newly inserted transactions and
thus save much processing time by incrementally maintaining
rules, both of them must still scan the original database to
handle cases of newly inserted transactions, both of them
solve the insertion case but ignore the update and delete cases.
Another disadvantage is if the number of newly inserted
transactions [18] is less than the safety threshold, no action is
done in this case, this situation may occur frequently,
especially when the number of new transactions is small. In
additional; to the problem of being not flexible, for example
when the support value changes that means both techniques
will be meaningless. Any way their techniques start after static
association rule mining, after scanning and finding the large
itemsets and it is dependent on the support value from the
beginning.

Enhancing (ARBSI) presents solutions to the
disadvantages of the above techniques. It deals with:

1- The new transactions (insert/ update/delete).

2- The support value is flexible it depends on the
user as he/she chooses this value before and/or
during running the data mining process.

3- It only scans the original database once to find
all itemsets with their appropriate counts.

Also Enhancing (ARBSI) can work either in this
dynamic process from scratch, which is more efficient than
previous techniques such as: it knows the number of itemsetes
from the last process after normalization sub-process which
will reduce the time for scanning each transaction, it knows
the types of modification insert, update, and/or delete,
Enhancing (ARBSI) after generates a mathematical
summation value for each transaction [16]. If a new
transaction is to take place, a new summation value will be
generated based on the new status, which will also be
reflected in a dedicated file stored in a predefined local
database, which will be used to compare with itemsets
selected in the initial scan.
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A. Definition of the Proposed algorithm Enhancing
(ARBSI)

The proposed algorithm is to induce association rules from
transaction data, such that the presence of certain items in a
transaction will imply the presence of certain other items by
dividing the mining process into two phases. In the first phase,
all itemsets will be generated and counted by scanning of the
original database without any consideration to the threshold
value (minimum support) as in [8] [9] [10]. Number of all
itemsets will be equal (2 “'“™ — 1). Number of items will be
easy to calculate when we run the last normalization
sub-process in previous pre-processing process. This process
will be repeated until all the itemsets and there counts have
been found.

In the second phase, association rules are induced from
the large itemsets found in the first phase, after setting the sets
that contain the count of each set and the total number of the
transactions, we can activate the association rule any time as
follows:

e Input the support values (changeable).

e Divide every set by the total number of transactions
(Support {set} = count {set}/ count of transactions).

e Find the sets where Support {set} >= support value.

e Calculate the confidence.

All possible association combinations for each large itemset
are formed, and those with calculated confidence values
larger than a predefined threshold (minimum confidence) are
given out as association rules.

Note:

e [temsets with their counts in preceding runs are
recorded for later use in maintenance.

e For the original database is scanned once only at the
beginning and the counts are keep for any
modifications in later stages.

e No support value will be added until running data
mining, it will be inserted manually.

In the case were a new transaction is taken place, a new
summation value is calculated for this transaction. This is
stored in a predefined location (file). Scan the new

transaction; calculate the number of all sets that equal (2 *°F
new items l)

Once the numbers of itemsets are calculated the following
may take place based on the individual new transaction.

1- Input a new transaction:

If the transaction contains the same items that exist in
the original set, add (+1) to each set and (+1) to the
total number of transactions. If the transaction contains
a new item that does not exist in the original set, break
the transaction into {2 *°™™V™ _1} and add this new
sets to the original sets, add (+1) to each old set, and
(+1) to each new set and (+1) to the total number of
transactions.

2-Delete an exist transaction:
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There is no interpretations, cause the transaction and
the sets already exists, so add (-1) to each set and (-1)
to the total number of transactions.

3- Update an existing transaction:

In case of update an existing transaction all we have to
do is delete an exist transaction (Delete exist
transaction step), and then input a new transaction
(Input a new transaction step). Note here we can
continue as above; we have all the updated sets and
there counts and the total number of updated
transactions.

[16] Proposed an algorithm to generate a
mathematical summation for each transaction. Based
on these summation values the exact transaction in the
local database that have been modified and needs to be
replaced can be identified. In other words, if there are
any modification affecting one or a number of
transactions, it simply selects the transactions
summation for the particular transaction; delete the old
transaction then insert the new updated one, and make
the changes needed related to the transaction with the
modified summation value, this will result in the
replacement of the transactions by their changed value
from the source DB

B. Presentation of the Enhancing (ARBSI)

The Enhancing (ARBSI) is presented; the notations used in
the algorithm are:

D: the original database;

T: the set of new transactions,

d: the number of transactions in D;

t: the number of transactions in T;

S: the support threshold;

Cy : the set of all candidate k-itemsets from D;
#items: # of items from normalization sub process;
#new items: the number of updated items;

The Enhancing (ARBSI) steps are explained as follows:

INPUT: A support threshold S, is a set of transaction in D
consisting of (d) transactions, and a set of t new
transactions, and #items.

OUTPUT: A set of final association rules for the D and T.

STEP 1: Calculate the number of all sets equal 2 ™ - 1.
STEP 2: Find all k-itemsets C; and their counts from the
transactions.

STEP 3: Input S.

STEP 4: divide every set by the total number of d.

Support {set} = count {set}/ count of d.

STEP 5: Set the sets where Support {set} >= S. All possible
association combinations for each large itemset
are formed.

STEP 6: Calculate the confidence, those with calculated
confidence values larger than a predefined
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threshold (minimum confidence) are given out as
association rules.
STEP 7: If T is not empty (there is a new transaction): from
the previous technique [16] we can find:
1. Wither it’s an insert, delete and/or update
case.
2. The item-summation, are recalculated and
stored along with modification time.

Sup step 7.1: If Input is a new transaction:
1. Calculate the item-summation value.
2. Calculate the # of all sets equal (2 V™ _ 1),

3. Scans the sets to generate sets itemsets.

4. If the transaction contains some of the items that exist
in the original sets, add (+1) to each set and (+1) to
the total number of transactions.

5. If the transaction contains a new item that doesn’t
exist in the original set, break the transaction into {2
fnew itemsy and add these sets to the original set.
Addition of (+1) to each new set and (+1) to the total
number of transactions.

Sup step 7.2: If deleting an exist transaction:

1- Select the transaction from the old
item-summation

2- Calculate the number of all sets equal (2 finew
items _ 1).

3- Scans the sets to generate sets itemsets.

4- Break the transaction into its sets and add (-1)
to each set and (-1) to the total number of
transactions.

Sup step 7.3: If updating an exist transaction:

1. Select the transaction from the old item-summation.

2. Calculate the item-summation for the new modified
transaction.

3. Calculate the number of all sets equal (2 ¥ ™™ _ 1)
for the old transaction, scans the sets to generate
itemsets, break the transaction into its sets and add
(-1) to each set and (-1) to the total number of
transactions.

4. Calculate the number of all sets equal (
for the modified transaction, scans the sets to
generate itemsets, if the transaction contains some of
the items that exist in the original sets, add (+1) to
each set and (+1) to the total number of transactions,
if the transaction contains a new item that doesn’t
exist in the original set, break the transaction into {2
fnew itemsy and add these sets to the original set.
Addition of (+1) to each new set is necessary and
(+1) to the total number of transactions.

End

2 finew items 1)

The Enhancing (ARBSI) can thus find all large 1-itemsets for
the entire updated database. After that, candidate 2-itemsets
from the newly inserted transactions are formed and the same
procedure is used to find all large 2-itemsets. This procedure
is repeated until all large itemsets have been found.
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IV. ILLUSTRATIVE EXAMPLES

In this Section, an example is given to illustrate Enhancing
(ARBSI) .Assume the initial data set includes 8 transactions,
which are as shown in table 1. Note that TID number (200 and
800) and TID number (400,500) are having the same items
which mean the same item-summation. From the previous sub
process (normalization) we know that the number of items is
(5) which mean number of sets will be = (2 "™ _ 1), and
equal (2 S_ 1) =31. The minimum support threshold S is 50%.
All itemsets were generated and counted by scanning the
original database (just once) without the consideration of the
threshold value (minimum support), the sets of itemsets and
there counts. , using a conventional mining algorithm such as
the Apriori algorithm, all large itemsets with counts larger
than or equal to 4; (8+50% = 4) are found, Since the user
specified minimum confidence is 80%, the final association
rules are shown in Table 2. More details in [17].

Table 1: An original database with 7D and Items

TID Items Item-summation
100 ACD 1

200 BCE I1

300 ABCE \

400 ABE 111

500 ABE 111

600 ACD 1

700 BCDE X1

800 BCE I1

Table 2: The final association rules for this example

Rule Confidence
IF B,C, Then E | Count(B,C,E)/Count(B,C)= 1
IF C,E, Then B | Count(B,C,E)/Count(C,E)= 1
IF B, Then E Count(B, E)/Count(B)= 1
IF E, Then B Count(B,E)/Count(E)= 1

A. Illustrative Example for Insertion Case

Assuming that there are two new transactions as shown in
Table 3 these are inserted after the initial data set is processed,
the new transactions are stored in file table with 3 added
columns for; the item-summation, type of modification and
time of modification.

Table 3: Two new transactions

New transactions
TID | Items | Item-sum Type-mod Time of
mation modification
900 | ABC| XII insert Day/hour
D
100 | DEF VII insert
0
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Enhancing (ARBSI) is proceeds as follows: For transaction
number 900, 1000; calculate their new summation value,
calculate the number of all sets equal (2 *°™V™ _ 1) and
scans them to generate candidate itemsets (only for these new
transactions and according to their new summation number),
add (+1) to the candidate itemsets count, add (+1) to the total
number of transactions. Note: in this transaction 1000 the item
F is new in this case no need to calculate the number of all sets
equal (2 ® - 1), = 63 which will consume C.P.U time, all we
need to do is add only 4 sets {F, DF, FE, DEF}, instead of 63
set it will be 35 set. The rest of the transactions still have the
same summation value calculated at the start of the process.
Calculate their new summation value, calculate the number of
all sets equal (2 * "V ™ _ 1) = 15 and scans them to
generate candidate itemsets (only for these new transactions),
add (+1) to the candidate itemsets count, add (+1) to the total
number of transactions. Table 4, 5 show the itemsets and there
counts.

Table 4 T new sets and there counts fortansacton 900

I I U I

ltems| A| B| C| D|AB|AC| AD|ECBD| (D|ABC| ABD | ACD 3D ABCD
I
J

! l l
out| 6 T 7| 4 4] 4] 35 D4 1)

Table 5: The new sets and there counts for transaction 1000

Ttems D E F DE DF EF DEF
Add 1 1 1 1 1 1 1
count 5 7 1 3 1 1 1

The minimum support threshold s is set at 50%; all large
itemsets with counts larger than or equal to 5; ((8+2) *50%
=5) are found, No large 3-itemsets were found in this
example. Since the user specified minimum confidence is
80%, the final association rules are shown in Table 6.

Table 6: The final association rules for this example

Rule Confidence
IF B, Then E Count(B, E)/Count(B)=6/7
IF E, Then B Count(B,E)/Count(E)=6/7

As a result of the insert of two transactions: the final
association rules for this example (10 transaction, support =
50% and confidence =80% value, two rules) is different from
the final association rules (8 transaction, support = 50% and
confidence =80% value, four rules). Note: after adding the
new transactions in the original database:
1. No need for rescanning the original database
scanning.
2. For each new transaction the new calculated
item-summation will be saved.
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3. The modified table will be empty (it contain only the
new added transaction which will cleared after the
algorithm deals the transactions).

4. The new normalized transactions will be saved in
table2

B. Example for Changing the Minimum Support
Threshold Case

Assume after this results, suppose the minimum support
threshold is changed and set at 40%, which mean we have the
same sets of itemsets and there counts in the original database
shown in Table 7

Table 7: All large itemsets from an original database
with s=40%

Large itemsets
1 item | Count | 2 items | Count |3 items| Count
A 6 AB 4 BCE 4
B 7 AC 4
C 7 BC 5
D 5 BE 6
E 7 CE 4
CD 4

{B, C, E} can be found to be a large 3-itemset. Next, the large
itemsets are used to generate association rules. Since the user
specified minimum confidence is 80%, the final association
rules are shown in Table 8.

Table 8: The final association rules for this example

Rule Confidence
IF B,C, Then E Count(B,C.E)/Count(B,C)=4/5
IF C.E, Then B Count(B,C.E)/Count(C.E)= 4/4
IF B, Then C Count(B,C)/Count(B)=6/7
IF B, Then E Count(B, E)/Count(B)=6/7
IF E, Then B Count(B.E)/Count(E)=6/7
IF D, Then C Count(C,D)/Count(D)=4/5

As a result for changing the minimum support
threshold to 40%: the final association rules for this example
(10 transaction, support = 40% and confidence =80% value,
six rules) shown in table 8 are different from the final
association rules (10 transaction, support = 50% and
confidence =80% value, two rules) .Note: after changing the
minimum support threshold no need for rescanning the
original database in order to find the association rule.

C. IHlustrative Example for Deletion Case

Assume the transaction 400 shown in Table 1 is deleted after
the initial data set is processed.

Table 9: The delete transaction
New transactions
TID Ttems Item-summation | Type-mod
400 ABE ITI delete

Time of modification
Day/hour

Enhancing (ARBSI) algorithm proceeds as follows: the new
delete transaction is stored in file table with 3 added columns
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for; the item-summation (the item-summation for delete
existing transaction is already calculated, the key for delete
the transaction), type of modification and time of
modification. Calculate the number of all sets equal (2 #of delete
ems _ 1), = 7 and scans them to generate candidate itemsets
(only for the delete transaction), add (-1) to the candidate
itemsets count, add (-1) to the total number of transactions,
the new sets of itemsets and their counts are shown in Table
10.

Table 10: The new sets and there counts

[tems A B E AB AE BE | ABE
subtract 1 1 1 1 1 1 1
count 5 6 6 3 2 ] 2,

The minimum support threshold s is set at 50%; all large
itemsets with counts larger than or equal to 4.5 ((10-1) *50%)
are found, as shown in Table 21. No large 3-itemsets were
found in this example. Next, the large itemsets are used to
generate association rules. Since the user specified minimum
confidence is 80%, the final association rules are shown in
Table 11.

Table 11: The final association rules for this example

Rule Confidence
IF B, Then C Count(B,C)/Count(B)=5/6
IF B, Then E Count(B, E)/Count(B)=5/6
IF E, Then B Count(B.E)/Count(E)=5/6

As a result of delete the transactions: the final
association rules for this example (9 transaction, support =
50% and confidence =80% value, three rules) shown in table
11 is different from the final association rules (8 transaction,
support = 50% and confidence =80% value, four rules)

Note: after deleting the transaction in the original database:

1.  No need for rescanning the original database
scanning.

2. For each new delete transaction the
calculated item-summation will be the key for
delete the transaction from table2

3. The modified table will be empty (it contain
only the new deleted transaction which will
cleared after the algorithm deals the
transactions).

4. The deleted normalized transaction will be
removed from table2 .

D. Ilustrative Example for Update Case

Assume the transactions 500 shown in Table 12 is updated
after the initial data set is processed, the last sets and there
counts in the original database are shown in table 13, 14

Table 12: Update new transactions

New transactions
TID Items Item-summation Type-mod
500 ABE E1T delete
500 ABF insert
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Enhancing (ARBSI) for update case proceeds as follows: first
it is delete case for the old transaction then it will be insert
case for the modify transaction.

1. Select the old modified
item-summation.

2. Calculate the number of all sets equal (2° — 1), =7 and
scans them to generate candidate itemsets (only for
the old modified transaction), the new sets of
itemsets and there counts are shown in Table 12.

3. For each old modified transaction the calculated
item-summation will be the key for delete the
transaction from table2 [16]

transaction by the

Table 13: The new sets and there counts

Ttems A B E AB AE BE | ABE
subtract 1 1 1 1 1 1
count 4 5 5 2 1 4

4. Calculate the item-summation for the new modified
transaction.

5. Calculate the number of all sets equal (2 * — 1) =7 for
the modify transaction, scans them to generate
candidate itemsets (only for these new transactions),
add (+1) to each set and (+1) to the total number of
transactions, the new sets of itemsets and there
counts are shown in Table 14.

Table 14: The new sets and there counts

Items A B F AB AF BF ABF

add ¥ 1 1 1 I 1

count 5 6 1 3 1 1

Note here the sets {F, AF, BF, ABF} are added to the original
database. The minimum support threshold s is set at 50%; all
large itemsets with counts larger than or equal to 4.5 ((9-1+1)
*50%). No large 3-itemsets were found in this example. Next,
the large itemsets are used to generate association rules.
According to the condition probability, . Since the user
specified minimum confidence is 80%, the final association
rules are shown in Table 15

Table 15: The final association rules for this example
Rule
IF B, Then C

Confidence

Count(B,C)/Count(B)=5/6

As a result of update the transactions: the final
association rules for this example (9 transaction, support =
50% and confidence =80% value, one rules) shown in table
5.38 is different from the final association rules (8 transaction,
support = 50% and confidence =80% value, four rules) shown
in table 5.12. Note: after updating the transaction in the
original database:

1. No need for rescanning the original database scanning.

2. For each old modified transaction the calculated
item-summation will be the key for delete the old
transaction from table2 [16].
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3. The modify table will be empty (it contain only the
new updated transaction which will cleared after the
algorithm deals the transactions).

4. The old normalized transaction will be removed from
table2.

5. For each new modified transaction the new calculated
item-summation will be saved with transaction in the
original database.

6. The new normalized transactions will be saved in
table2.

As a conclusion for the above examples:

1. For the first 8 transaction (the original database) with
minimum support threshold = 50%, minimum
confidence is 80%, 4 rules.

2. For the two inserted transaction (8+2=10
transactions), with minimum support threshold =
50%, minimum confidence is 80%, 2 rules .

3. For the same transactions but changing the minimum
support threshold to 40%, minimum confidence is
80%, 10 transaction, 6 rules.

4. When delete one transaction (10-1=9 transactions),
with minimum support threshold = 50%, minimum
confidence is 80%, 3 rules.

5. With update transaction (9-1+1 =9 transactions), with
minimum support threshold = 50%, minimum
confidence is 80%, one rule. .

V. CONCLUSIONS

Data mining algorithms have at least two issues that
characterize a database perspective of examining data mining
concept: Efficiency and Scalability. Ideally any solution to
data mining problems must be able to perform well against
real-world databases. As far as the efficiency is concerned
some parallelization is used to improve or overcome this
issue. Dynamic data mining pose significant challenges. It can
discover up-to-date patterns invaluable for timely strategic
decisions, but this has to be done accurately and quickly with
limited computation resources. Mining process can expose
long-term trends and more complicated patterns that lead to
deeper insights, but more than often meaningful patterns can
only be found in subspaces, which incur high complexity in
pattern mining.

This paper presents a two part solutions to the
problem of Dynamic data mining. The first is concerned with
process of detecting an update on the data after it has been
collected for the data mining from its original source. The
second deals with the process of maintaining the association
rules based on the updates that have taken place on the
original data in its original location. These two solutions when
combined will allow the Enhancing (ARBSI) to solve the
problem of dynamic data mining only one scan to the original
source of data. This will provide an efficient dynamic data
mining technique. Enhancing (ARBSI) works with massive
real-world databases regardless of the amount of data and/or
the amount of memory available. This algorithm also copies
all updates that might take place in the original database to a
dummy table specially created. This dummy table will contain
a copy of the update records plus their summation value. And

47

based on the summation value all the updated records are
identified and all the necessary updates (insert, update, and
delete) are carried out on the data used in the data mining
process. The second part of the algorithm is used to maintain
the association rules produced by the data mining process
according to all updates carried out on the original sources of
data. This process carries out this process using the data
available in the dummy database containing the updated
records and their summation value. Once it finished its task it
clears the dummy database and waits for any new updates to
take place. The paper also presents several examples to
support the claims made. The results of the test showed that
Enhancing (ARBSI) is capable of carrying out a data mining
process on a dynamic database that is being continuously
updated, covering all the three updates (insert, update, and
delete) transactions. This algorithm was also tested using both
static and dynamic databases in both cases the proposed
algorithm achieved its task with high efficiency. From the
above it is clear that the goal of this paper has been
accomplished, in the form of the development of a unique
technique to deal with both static and dynamic Data Mining
process. The results obtained proved that Enhancing
(ARBSI) is able to solve some of the problem related to the
Dynamic Data Mining process
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