International Journal of Engineering Research And Management (IJERM)
ISSN: 2349- 2058, Volume-04, Issue-04, April 2017

Feasibility Study on Software Engineering Models

Pratik Sankar Panda, Sunit Gourav Mohanty, Monisa Nayak, Romit Panigrahi’;

Abstract— Software Engineering is an application of
engineering principles in software developments. The
principles can be defined as by applying well proven
techniques in an organized and systematic manner. The
objective is to develop a high quality software product.
The software contains a set of codes, a set of manuals
which includes user manual and design manual. User
manual is the one in which what kind of services are
provided to the users of the system depending on the user
type. Software engineering helps to produce or develop
high quality software within the available budget and
time. There are a few attributes defining the software
quality like wusability, maintainability, reliability,
portability, reusability and efficiency

Index Terms— Software Engineering, Software
Systems, Software Design, Designing Models

I. INTRODUCTION

In modern days we have to face many complex situations in
the latest software systems. It would be very difficult to
overcome these problems without any proper path or strategy
being followed. By putting use of management and evolution
of intensive system service the advancement of software
engineering community has taken place. In the operational
context, these complexities have lead to resilient energy
efficiency which depends on customizable and adaptable
changes. It consists of four P's such as Product, Process,
People, and Project. In order to get the product we do various
activities and those activities are referred as a process.
Software is incorporeal because it is not composed of matter;
having no material existence. It is an unsubstantial way of
approach. When a human-readable programming language
(preferably text) describes computers instructions in a bulk it
is called source code. There are various models implemented
for designing of process model like Waterfall model (Iterative
Waterfall model), prototype model, Spiral Model
(Verification and Validation), Evolutionary Model and RAD
Model. These are various targets or goals of software
engineering which includes the improvement and upliftment
of the standard and productivity of the outcome. It also takes
care of the job satisfaction of the software engineer. As per the
distribution effort of software the life span is 1-3 years in
developing it and 5-15 years for its maintenance. Distribution

Manuscript received April 17,2017

Pratik Sankar Panda, Department of Computer Science and
Engineering, Siksha 'O' Anusandhan University, Bhubaneswar, Orissa

Sunit Gourav Mohanty, Department of Mechanical Engineering,
Siksha 'O' Anusandhan University, Bhubaneswar, Orissa

Monisa Nayak, Department of Computer Science and Engineering,
Siksha 'O' Anusandhan University, Bhubaneswar, Orissa

Romit Panigrahi, Depatment of Electrical Engineering, Siksha 'O’
Anusandhan University, Bhubaneswar, Orissa

30

between development and maintenance are likely to be 40/60,
30/70 to 10/30. Maintenance includes Corrective, Adaptive,
and Perfective which states that it is very likely that defects
may be seen by the customers and those defects can be
corrected as per the maintenance of the software. This result
in modification of software’s to accommodate changes in its
surroundings. As the customer recognizes the additional
functions in a software that will provide benefits to the
individuals to extend the software’s functionality
requirement.

II. SOFTWARE DESIGN MODELS

2.1 SDLC

Basically present days for design, development and testing
high quality software IT sectors uses a framework with
predefined task management called development life cycle
(SDLC). These are being done so that we can determine a
proper model to be used so that we get a good quality product
with minimal time and cost . it helps in a systematic approach
to a problem . There are various software development
models each having its specific way of designing and
execution of the problems. These models are to be selected on
the basis of the software problem being generated and the best
solution that can be provided to it.

2.2 Classical (Iterative Waterfall Model)

Basically it describes a simple model to implement and
manage. Each of its phases has entry and exit criteria. After
the completion of one phase the next phase starts there is no
overlapping of phases. A review is conducted during each
phase in order to check that the project is going on in a right
direction. Some deliverables are also prepared in each of its
phases. The model is very rigid.

Requirement

Specifications

System Design and
Software Design
Implementation and
Unit Testing

Integration and
System Testing

N

tion and

0
Maintenance

i3

Figure 1: Classical (Iterative Waterfall Model)

www.ijerm.com

Feasibility Study on Software Engineering Models

In Tterative waterfall model the backward paths from every
phase to its previous phase is considered as in addition to the
classical waterfall model. This path allows for correction of
errors committed during a phase as and when they are
detected in a later phase. However, there are no feedback
paths for feasibility study and hence feasibility study errors
cannot be detected. The principle by which errors are
detected as close to introduction point as possible is called
phase containment of errors. We often see phase containment
of errors to achieve reviews of being conducted after every
milestone. In this model, the phases overlap in time as a phase
may not end at a specific time instant if we include the rework
required for the phase later due to errors in the phase detected
in the later stage.

2.3 Prototype Model

Whenever we are required to build up a design of a software
system a working prototype is needed. The toy
implementation of a system (a prototype) with a few
functionalities so as to illustrate the customer the formats and
layout of the design messages etc. Many technical issues are
associated with the developing process and also many design
decisions are dependent on the efficiency of a sorting
algorithm.

Quick Plan
Communication Quick Design
Deployment, Delivery] Constomcdon of
Feedback Protorype

| S

Figure 2: Prototype Model

This model is more user friendly because it gives the user a
chance to interact with the dummy system before the actual
system is built up. The missing functionalities can also be
identified easily and the developer can design or reframe the
structure as per requirement. It has more chances of giving an
accurate output at the end.

2.4 Rapid Application Development Model (RAD)

The rapid prototyping can be minimized by a software
development methodology. For faster product delivery
basically RAD model functional modules are developed in
parallel to make the complete product. It follows an iterative
as well as incremental model consisting of developers,
domain experts, customer representatives, IT management
working gradually on their prototype.

31

Team#n
Modeling Construction
l Business, data & =={ Components reuse
| process modeling Code generation
(Communication Testg
Team2
1 Modeling Construction Deployment
Business, dam & Components reuse Integration
Planning process modeling [+ Code generation Delivery
Testing Feedback
Team1
Modeling Construction
Business, dam & pmipf Components reuse
process modeling Code peneradon
Testing
e 60 to 90 days ———————]

Figure 3: Rapid Application Development Model (RAD)

Business modeling, Data modeling, Process modeling,
Testing and Turnover are the various phases of RAD Model.
Business modelings are designed in terms of the information
flow and information distribution among various business
channels. By driving successful flow of information a
complete business analysis is performed. It helps to
investigate the vital business information, factors can be
obtained. The data modeling is the information collected in
business modeling phase for reviewed and analyzed data
objects form sets vital for the business. The data attributes sets
are identified and defined relation between data objects.

In the case of process modeling the data objects sets establish
the business information flow (defined in the modeling phase)
are converted to gain the specific business objectives as per
the business model. Process descriptions are required for
summing, removing, retrieve or modify data objects in this
phase. By using automation tools and data models into actual
prototypes in an application generation helps to build the
actual system and coding layout. The overall testing time is
reduced in the RAD model by testing and turnover of
prototypes independently. Interfaces testing between
prototypes should be done properly. The overall risk is
reduced as programming components have been already
tested thoroughly.

2.5 Evolutionary Model

Evolutionary Process Model

Concurrernt

activities

Initial

Specification ;
version

Intermediate

Development i
Versions

Qutline
description

Final

Validation 5
version

il

www.ijerm.com

International Journal of Engineering Research And Management (IJERM)
ISSN: 2349- 2058, Volume-04, Issue-04, April 2017

Figure 4: Evolutionary Process Model

In this evolutionary model is very natural model to use in
object oriented software development projects. The user gets
a chance to model first a simple working system is built which
subsequently undergoes many functional improvements and
additions until a desired system is built. This model is known
as “Design a little, build a little, test a little, and deploy a little
model”. After the requirements have been specified in the
above figure 4 are software modules of the product which are
incrementally developed and delivered. Software
requirements are first broken down into several modules and
the core module is first developed. This experiment done with
moderately developed software much before software’s
complete version is released. This model is helpful to know
the requirements of requested by the customer after the
software is delivered becomes very less.

2.6 Verification and Validation Model

Conoet Transition
Develo, r'r)mnt Oparationd
P Maintenance
Requirements Test &
Engineering Evaluation
System System
Architecture Integration

System Design
& Development

Figure 5: Verification and Validation Model
This model deals with processes execution taking place in a
sequential manner in V-shape format. It is the advanced
model of waterfall model where for each development phase
has its own testing phase as of which whenever a level testing
phase has been successfully completed then only we can go
for the next development phase the corresponding testing
phase of the development phase and parallel model is used for
the verification phases on one side along with other side
validation phases. Both the sides of the V-model are
connected by coding phase. A well defined and clearly
documented requirement is being acknowledged for this
V-model. There is a stable product definition assigned. The
technology has ambiguous requirements as well it is not
dynamic but it is well understood by the project group.

2.7 Spiral Model

32

Planning
Estimaring
Scheduling
Risk Analysis

Modeling
Analysis
Design

Construction
Code
Test

Deployment
Delivery, Support, Feedback

Figure 6: Spiral Model

In this model each phase represents a phase of the software
process like requirement analysis, system design. The inner
most loops are linked with system feasibility where as the next
loop of the system lies on requirements of the system and the
next one is linked with the design of the system. In this model
we have no fixed phases. According to the figure, the first
quadrant is for determining objectives. The phase objectives
are identified here and objectives risk are also examined here.
Risk is any adverse circumstance which slows or hinders the
successful software project completion. The second quadrant
aims at resolving risk identified. The analyst task is to verify
and eliminate the single identified project risk commonly
called the practice of risk assessment and reduction. The third
quadrant represents the development and validation of the
next level of the product with risk reduced. The fourth
quadrant is needed for review and planning. The customer
reviews the results achieved before the next iteration planning
around the spiral is done. Spiral model acts as an “Meta
model” as it matches with other models in one way or other.
The complete version of software gets progressively built
with each iteration the spiral. Here waterfall model is
represented by a single loop of spiral. It uses iterations (an
evolutionary approach) through the spiral are evolutionary
levels. It enhances the understanding and risk response during
every spiral iterations which is equal to iterative waterfall
model. Prototyping has a risk reduction mechanism that is
similar to the aspects of prototype model.

III. CONCLUSION

As we have already came to know about the various software
design models and their applications in the developing of
software it would be beneficial for us in the better
understanding and implementation of the appropriate model
as and when required. These models help us to think design
and implement the model in such a way that we get our
outcome in a simplified manner. Whenever we go for these
models we get more accurate results and the defects reduce in
the final code. It increases the modularization and
decomposition of the system. It also enables the use of parts of
the system in the new project. We should never forget that
using of any wrong model to do a task could not only damage
the entire system but also lead to wastage of resources so it

www.ijerm.com

Feasibility Study on Software Engineering Models

should be taken high care that selection of the model should
be correct. Previously which was very difficult to achieve
could be done by these models.

REFERENCES

[1]Pohl, K., Bockle, G. and van Der Linden, F.J.,
2005. Software ~ product line engineering:
foundations, principles and techniques. Springer
Science & Business Media.

[2]Brereton, P., Kitchenham, B.A., Budgen, D., Turner,
M. and Khalil, M., 2007. Lessons from applying the
systematic literature review process within the
software engineering domain. Journal of systems and
software, 80(4), pp.571-583.

[3]Lyu, M.R., 1996., Handbook of software reliability
engineering.

[4]Herbsleb, J.D. and Moitra, D., 2001. Global software
development. IEEE software, 18(2), pp.16-20.

[5]Musa, J.D., 1975. A theory of software reliability and
its application. [IEEE transactions on software
engineering, (3), pp.312-327.

[6]Glass, R.L., Vessey, I. and Ramesh, V., 2002.
Research in software engineering: an analysis of the
literature, Information and Software
technology, 44(8), pp.491-506.

[7]Huang, C.Y., 2005. Performance analysis of software
reliability growth models with testing-effort and
change-point. Journal of Systems and
Software, 76(2), pp.181-194.

[8]Sametinger, J., 1997. Software engineering with
reusable components. Springer Science &
BusinessMedia.

[9]David, O., Ascough, J.C., Lloyd, W., Green, T.R.,
Rojas, K.W., Leavesley, G.H. and Ahuja, L.R., 2013.
A software engineering perspective on
environmental modeling framework design: The
Object Modeling System. Environmental Modelling
& Software, 39, pp.201-213.

[10] Walton, G.H. and Poore, J.H., 2000. Generating
transition probabilities to support model-based
software testing. Software: practice and
experience, 30(10), pp.1095-1106.

[11]Panichella, A., Dit, B., Oliveto, R., Di Penta, M.,
Poshyvanyk, D. and De Lucia, A., 2013, May. How
to effectively use topic models for software
engineering tasks? an approach based on genetic
algorithms. In Proceedings of the 2013 International
Conference on Software Engineering (pp. 522-531).

IEEE Press.

[12]Miller, J., 2000. Applying meta-analytical
procedures to software engineering
experiments. Journal of Systems and

Software, 54(1), pp.29-39

33

www.ijerm.com

