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A Study on New Method for Control to Bead Width using
Infrared Sensors
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Abstract— Generally automatic welding process is applied for
many manufacturing areas which included pressure vessel
fabrication, production of offshore structures and the nuclear
industry. More recently, products of piles and columns to
support wind turbines have significantly been grown in
importance. However, an intelligent algorithm that predicted
the optimal bead geometry and accomplishes the desired
mechanical properties of the weldment in the robotic GMA(Gas
Metal Arc) welding should be developed. The algorithm should
also cover a wide range of material thicknesses and be applicable
for all welding position. In addition, the proposed model for the
automatic welding system must be available in the form of
mathematical equations. In this study, an intelligent model
which employed the neural network algorithm, one of Al
(Artificial Intelligence) technologies were developed to study the
effects of welding parameters on bead width and predict the
optimal bead width for lap joint in the robotic GMA welding.
BP(Back-Propagation) and LM(Levenberg-Marquardt) neural
network algorithm were used to develop the intelligent model.
Not only the fitting of these models were checked and compared
by using variance test, but also the prediction on bead width
using the developed models were verified.

Key Words—GMA(Gas Metal Arc) Welding, BP(Back-
Propagation) Neural Network, LM(Levenberg-Marquardt)
Neural Network, Lap Joint Welding, Bead Geometry

I. INTRODUCTION

The GMA welding process in which the welding electrode
is melted and molten metals is transferred to the workpiece, is
the technology for assembling metal structures included ships,
cars, trains, pipelines and bridges. One of the important tasks
in the robotic GMA welding process is to understand how
welding parameters affect the bead geometry and
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subsequently develop the suitable models for predicting the
desired outputs as welding quality. High weld quality by
carefully choosing and closely controlling welding
parameters may be made in all circumstances for arc welding
process[1]. Many attempts[2-3] were made to understand and
estimate the effect of welding parameters on the optimal bead
geometry. These included theoretical studies, numerical
analysis, empirical models and Al(Artificial Intelligence)
technology for actual welding application.

In recent years, neural networks have become a very useful
tool in the modeling of interrelationships between input and
output variables of many complicated systems. With the
development of computational technology, the neural
networks appeared to constitute a workable model for
predicting the bead geometry under given set of welding
conditions according to the work done by Nagesh and
Datta[4]. Vitek et al.[5] described the use of the neural
network to predict weld pool shape as a function of welding
parameters for a welding process and showed that a neural
network model is a viable technique for predicting weld pool
shape. Eguchi et al.[6] employed a neural network not only to
achieve the good back-bead geometry, but also to estimate the
wire extension and the arc length by using measurements of
both welding voltage and arc current. Jeng et al.[7] predicted
the laser butt welding parameters using a BP and a Learning
Vector Quantization(LVQ) neural networks. They also
insisted that both networks are very useful in selecting
suitable welding parameters and help in avoiding
inappropriate welding design. Srikanthan and Chandel[§]
proposed the steps adopted to construct the neural network
model in the GMA welding and evaluated the proposed neural
network model. Kim and Jun[9] have used for a BP neural
network to predict bead geometry in the GMA welding
process and concluded that the proposed neural network
estimator can predict bead geometry with reasonable
accuracy. Li et al.[10] proposed a neural network for on-line
prediction of quality in the GMA welding process. A neural
network for shipbuilding in which the input parameters were
the chemical elements and the weld cooling rate, while the
responses were the yield and ultimate tensile strengths,
elongation and reduction of area, were constructed[11]. Wu et
al.[12] developed a real-time monitoring system for detecting
abnormal conditions in robotic GMA welding on the butt
weld. Through the statistical processing, it was found that the
correct identify-cation rates for normal and abnormal welding
conditions are 100% and 95%, respectively. In addition, bead
geometry depended on the amount and distribution of the
input energy on the workpiece surface and the dissipation of
input energy in the workpiece[13]. In the GMA welding
process, heat and mass inputs are coupled and transferred by
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the weld arc to the molten weld pool and by the molten metal
which is being transferred to the weld pool. The amount and
distribution of the input energy are basically controlled by the
obvious and careful choices of welding parameters to
accomplish the optimal bead geometry and the desired
mechanical properties of the weldment[14]. To make
effective use of the robotic GMA welding, it is imperative that
the mathematical models are employed to predict bead
geometry, applicable to all welding positions and covering a
wide range of material thicknesses. Kim et al.[15] represented
a new algorithm to establish a mathematical model with a
neural network to understand relationships between welding
parameters and top-bead width, and to predict welding
parameters on top-bead width in the robotic GMA welding
process. Using a series of the robotic GMA welding process,
additional multi-pass butt welds were carried out to verify the
performance of the neural network models as well as to select
the most suitable model. Generally joint configurations for
GMA welding process have classified square butt, edge butt,
V-butt, T-butt, lap, multiple lap, T-lap, etc. Several
researchers [16-17] done in joining of thick plates have
mainly focused on the butt joint configurations. However,
lap-joint welds are one of the most commonly used types of
weld joints in the automotive industry and are often joined
using continuous seam welds or resistance spot welds. Buffa
et al.[16] investigated the welding parameters on the
metallurgical and mechanical properties of friction stir
welded lap joints for T4 aluminum alloy. More recently,
Salari et al.[17] conducted the investigation of influence of
tool geometry on the structural and mechanical properties of
the lap joint of 5456 aluminum alloy and the result indicated
that the stepped conical thread pin improved the joint
mechanical properties by improving the material flow during
FSW (Friction Stir Welding).

However, the study of prediction of welding parameters on
the optimal bead width for lap joint welding in the robotic
GMA welding process using neural network is not carried out.
Consequently, the objective of this paper is to propose
intelligent models for the lap joint in the robotic GMA
welding process by neural network algorithm. Based on the
experimental results, two neural network models which based
on BP and LM neural networks have been developed for
studying the effects of welding parameters on bead width as
welding quality. These two neural network models are
verified by data obtained from additional lap joint welds, and
compared. Finally predictive behaviors and advantages of
each model are discussed.

II. EXPERIMENTAL WORKS

Experiments were designed for developing the intelligent
models to correlate independently controllable welding
parameters. The experimental design provided the smallest
number of treatment combinations with which the main effect
of a factor and the interaction between the factors could be
defined. Since the robotic GMA welding process was
considered as a multi-parameter process, it's hard to find
optimal parameters for good welding. According to previous
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studies[15], five welding parameters included welding
voltage, arc current, welding speed, CTWD (Contact Tip to
Work Distance) and welding angle were selected as the input
parameters and the response was bead width to control
welding quality in this research. Fig. 1 shows a schematic
diagram for relationship between input and output parameters
in the robotic GMA welding process.

Gas Metal
Arc Welding —— Bead Width(W)

Process

Welding Voltage(V)

Arc Current(I)

Welding Speed(S)

CTWD(C)

Welding Angle(A)

Fig. 1 A schematic diagram for relationship between input
and output parameters

The concept of design of experiment to establish
quantitative relationship between welding parameters and
bead width was utilized. Therefore, welding parameters with
two or three levels were employed, as shown in Table 1.
Generally, the bead width, an important role in determining
the optimal welding conditions, was employed to study the
welding quality. A schematic view of bead width on a lap joint
in the robotic GMA welding process was presented in Fig. 2.
In this study, the bead width as welding quality was mainly
considered.

Table 1 Welding parameters and their levels for study

Parameter Symbol Unit Values
Welding Voltage A" Volt 17,19, 21
Arc Current 1 Amp 100, 130, 160
Welding Speed S mm/min 45,50
CTWD C mm 12,20
Welding Angle A © 55,65

12mm

Fig. 2 A schematic diagram for measurement of bead width

Statistically designed experiments which were based upon
full factorial techniques reduced costs and provided the
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required information about the main and interaction effects on
the response factors [18]. All other parameters except these
were fixed. The design matrix that had 72 experimental
welding runs was employed where each row corresponds to
one experimental run with two replications. The experimental
data that included five process parameters on bead width were
obtained by using a welding robot. In this study, the mean of
these replications was considered output parameters to utilize
the development of intelligent models. Fig. 3 shows a block
diagram in the robotic GMA welding process for this study.

The 200x75x12mm AS 1204 mild steel and steel wire with
a diameter of 1.2mm was employed for the experiment. In
order to quantify the welding quality in the robotic GMA
welding process, series of experiments were performed using
different welding parameter. Data collection and evaluation
were carried out using the robot welding facility. After 72
welds, the plates were cut using a power hacksaw and the end
faces to measure the bead width were machined. Specimen
end faces were polished and etched using a 2.5% nital
solution to reveal grain boundaries and to display the bead
width. An image analysis package called Image Analyst,
manufactured in the United States by Automatix Inc., was
employed to accurately measure bead width. The results of
the experiment were employed on the basis of development of
an intelligent model using two neural network algorithms in
the robotic GMA welding process.

Effective welding Set-up welding
condition condition
{ = Welding speed = Welding speed
Welding process [+ 5
Welding Robot
| | *Arcvoltage |l || * Arc voltage
l = Welding current = Welding current

Surface temperature

Arc monitoring

IR thermometers
system

Desktop computer

Fig. 3 Block diagram in the robotic GMA welding process for
this study

III. RESULTS AND DISCUSSION

A. Development of BP Neural Network Model

GMA welding is a complex and of multiple interactions so
that a mathematical and/or theoretical model for welding
parameters on bead width has not been achieved. Therefore,
the neural network to overcome this difficulty was employed
in this research because it was noted as being particularly
advantageous for modeling systems which contain noisy,
fuzzy and uncertain elements while a sufficient algorithm was
employed. The BP learning algorithm has been widely
applied neural network model. Since the welding parameters
of the robotic GMA welding process were inter-dependent
and constantly in conflict in a complex way, a structure of
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feed-forward neural network was adapted to this work. A
one-layer feed-forward network was constructed with five
input neurons in the input layer and one neurons in the output
layer to map the output parameters of bead width to five input
parameters such as welding voltage, arc current, welding
speed, CTWD and welding angle. The tangential sigmoid
function was used as non-linear function of neuron, and BP
neural network algorithm was used for this study as this
algorithm could be provided a faster convergence than the
gradient descent algorithm used in the other neural network.
The effectiveness and convergence of the BP learning
algorithm depended significantly on the value of the learning
constant which was strongly related to the class of the learning
problem and the network architecture. In general, the optimal
value of the learning constant would be decided only for the
given problem, and there was no single learning-constant
value suitable for the different training cases. Therefore, the
value of the learning constant should be chosen
experimentally by the trial and error approach. The choice of
the hidden layer size was one of the most important
considerations for the neural network design and this area of
study was still under intensive research with no conclusive
solutions available yet. The exact analysis of this issue was
quite difficult due to the complexity of the network mapping
and the non-deterministic nature of the many successfully
completed training procedures. In this work, the number of
neurons in the hidden layer was determined by the trial and
error approach. Several attempts have been made to study the
network performance with different numbers of neurons [7,
15]. The number of neurons within the hidden layer was
selected based on the accuracy of the prediction. Modeling of
the robotic GMA welding process with BP neural network
algorithm was composed of two phases: training and testing
of the neural networks with experimental results. A total of 72
data from the experimental results for the purpose of training
were collected, and the chosen 8 data from the experimental
results for the purpose of testing were taken. The schematic
representation of the multi-layer neural network architecture
employed in this research is shown in Fig. 4. In this research, a
specific training algorithm was employed to train the
developed BP neural network model, and the development
architecture of the network was carried out on a PC using
MATLAB. The effectiveness and convergence of the BP
learning algorithm depended significantly on the value of the
learning constant which was strongly related to the class of the
learning problem and the network architecture. In general, the
optimal value of the learning constant would be decided only
for the given problem, and there was no single
learning-constant value suitable for the different training
cases. Therefore, the value of the learning constant should be
chosen experimentally by the trial and error approach. The
choice of the hidden layer size was one of the most important
considerations for the neural network design and this area of
study was still under intensive research with no conclusive
solutions available yet. To get an effective neural network, a
large amount of training examples were employed. By
simulations of trails and errors, an optimal network
configuration was found to have the best performance to
predict bead geometry under given conditions. Results of the
prediction by the optimal BP network configuration were
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listed on Table 2.

Hidden
Layer

Output
Layer

Welding Voltage(V)

Arc Current(I)

Welding Speed(S) —
Bead Width(W)

CTWD(C) —
Welding Angle(A) ——

Fig. 4 Optimal BP neural network architecture for this study

Table 2 Experimental data to verify the developed model

Trial v I S C A w

No. | (Volt) | (Amp) | (mm/min) | (mm) | (°) | (mm)
1 17 110 46 15 | 65 | 4.908
2 17 110 48 18 | 55 | 4.587
3 17 120 46 18 | 55 | 4.897
4 17 120 48 15 | 65 | 4918
5 19 110 46 18 | 55 | 5.081
6 19 110 48 15 | 65 | 5.102
7 19 120 46 15 | 65 | 5.412
8 19 120 48 18 | 65 | 5.181

The measured and predicted bead widths with the optimal
network configuration using the developed BP neural network
model were calculated and represented in Fig. 5. According to
Fig. 5, the dotted line represented the predicted bead width
using the developed BP neural network model, and the solid
line indicated the actual data obtained from robotic welding
operation. It was observed that the calculated values obtained
using the developed BP neural network model was
approximately equal to those obtained by experimental results.
The performance of the developed BP neural network model
for predicting bead width is indicated in Fig 6. The maximum
error was limited within 0.3mm as shown in Fig. 6. In the case
of trail number 2, the predicted value was the most similar as
the experimental one. In other words, these errors generated
from the developed BP neural network model were
reasonably small to be accepted in most cases of practical
applications.

In order to statistically analysis the accuracy of the
developed BP neural network, errors of the predicted results
was calculated by

Error = y; -y ()

Where y, are the predicted values of bead width, y,

represent the experimental ones and i is the serial number of
testing data.

Fig. 7 presents the error of the predicted bead width using the
developed BP neural network model. As shown in Fig. 7, it
can also be observed that distributions of the predicted bead
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width were quite close to the best fit line so that the predicted
results were reasonable reliable.
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Fig. 5 Comparison between the measured and predicted bead
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Fig. 6 Performance of the developed BP neural network
model for predicting bead width
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Fig. 7 The error of the predicted bead width using the
developed BP neural network model

B. Development of LM Neural Network Model

The authors of the accepted manuscripts would be given a
copyright form and the form should accompany your final
submission. While the BP neural network algorithm was a
steepest descent algorithm, the LM neural network algorithm
was generally an approximation to Newton's method. The LM
neural network algorithm was employed in this research to
further improve the overall accuracy of the neural network
because this algorithm could generally be provided a faster
convergence than the gradient descent algorithm used in the
BP neural network algorithm. The adjustment of weights and
biases for the LM neural network algorithm were done
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according to transfer function:
AW =(J"T+ul )" JTe ®))

Where J is Jacobian matrix of derivation of each error, g is
a scalar and e is error function. The training process was
continued until either the maximum number of epochs was
completed or u reaches a maximum value. The variable
determined whether learning processes was according to
Newton’s method or by gradient descent. The parameters and
their values of LM neural network for configuration setup are
shown in Table 3.

Table 3 The parameters and their values of LM neural

network
Parameters Values
Goal Error le-08
Epochs 200
Transfer Function of Hidden Tan-Sigmoid Transfer
Layer Function
Transfer Function of Output Tan-Sigmoid Transfer
Layer Function
Number of Input Nodes 6
Number of Hidden Nodes 13
Number of Input Nodes 1

Comparison between the measured and predicted bead
width using the developed LM neural network model is
indicated in Fig 8. According to Fig. 8, the developed LM
neural network model was similarly good performance as the
developed BP neural network model. Performance of the
developed LM neural network model for predicting bead
width is represented in Fig. 9. Performance of the developed
model was excellent at the prediction for the bead width as
plotted in Fig. 9. It was observed that the calculated values
obtained using developed LM neural network model was
approximately coincided with the measured ones, and the
maximum error was limited within 0.3mm. In the cases of trail
number 2, 6, 7 and 8, the predicted value was almost the same
as the experimental ones.
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Fig. 8 Comparison between the measured and predicted bead
width(LM)
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Fig. 9 Performance of the developed LM neural network
model for predicting bead width

In other words, these errors generated from the developed
LM neural network model were reasonably small to be
accepted in most cases of practical applications. Fig. 10
presents the error of the predicted bead width with the
developed LM neural network model. It can be seen that the
error of the predicted bead width with the developed LM
neural network model were closed into 3%.

o

The Number of Errors
-

)

0 I I .
03 0.2 0.1 0 0.1 0.2 0.

-0.4 3 0.4

Error(Bead Width)
Fig. 10 The error of the predicted bead width with the
developed LM neural network model

C. Selection of Best Neural Network Model

To select the most accurate neural network model for
prediction of bead width in the robotic GMA welding process,
the 8 additional experimental data for testing were employed.
The convergence criterion for the developed neural network
models was determined by the average RMS error between

the desired output value y, and predicted output value y;

for the prediction, i.e.:

Enus = 2 (3 =) G

The results of the performance between the developed BP
and the developed LM neural network models were plotted in
Fig. 11. According to Fig. 11, the calculated values obtained
using the developed LM neural network model was
universally lower than those by the developed BP neural
network model. However, it was shown that the amount of the
errors generated from the developed BP neural network
model was still reasonably small to be accepted in most cases
of practical applications.
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Fig. 11 Comparison between the developed BP and the
developed LM neural network models

To compare the precision of two developed neural network
models, PAM(Predictive Ability of Model) [20], standard
deviation and average error for bead width using the two
developed neural network model were performed and
presented in Table 4. The two developed neural network
models were predicted very accurately. In the bead width, the
developed LM neural network model did achieve 100% in
PAM. Compared with the developed BP neural network
model the developed LM neural network was significantly
improved accuracy. In the comparison of standard deviation
and average error, the predicted bead width showed the most
concentrated distribution. As shown in Table 4, the developed
LM neural network had a predictive ability that was superior
to the developed BP neural network. Therefore, it can be
concluded that the use of LM neural network algorithm was
able to predict bead width for given welding conditions and
was capable of modeling of non-linear problem such as
welding process.

Table 4 Performance of the developed neural network models

The Developed The Developed
LM Model BP Model
PAM(%) 100 62.5
Standard 0.385 4204
Deviation
Average Error 0.184 0.017

IV. CONCLUSIONS

The two neural network models to predict optimal welding
parameters on the required weld width in lap joint for the
robotic GMA welding process was developed. To establish
the relationships between the welding process parameters and
bead width as welding quality, experiments were carried out
to gather the data (as per full-factorial design) on bead width.
Experimental results were employed to find the optimal
algorithm to predict the optimal bead width by BP and LM
neural networks in lap joint in the robotic GMA welding
process. The developed neural network models by BP and
LM algorithms were trained with data collected from the
experiment. After cycles of a training process, optimal
algorithms that predicted bead width in the robotic GMA
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welding process were proposed. Analyses on the predicted
results were made comparing to the target value generated
from additional experiment. Both of them were proved to be
capable to predict bead width within an acceptable range of
error. However the developed LM neural network model
could be provided better accuracy of predictions and was
more effective than the developed BP neural network model.

The developed neural network models are able to predict
the optimal welding parameters on the desired bead width and
weld criteria, help the development of automatic control
system and expert system and establish guidelines and criteria
for the most effective joint design.
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