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 
Abstract— this paper mainly investigated a modified fluid 

flow model with time delay by using the control and 

bifurcation theory and discussed the effect of the 

communication delay on the stability. It is find that there 

exists a critical value of delay for the stability by using the 

communication delay as the bifurcation parameter. When 

the dealy value passes through the critical value, the 

equilibrium loses its stability and a Hopf bifurcation 

emerges. Besides, the linear stability of the model and the 

local Hopf bifurcation are studied and we derived the 

conditions for the stability and the existence of Hopf 

bifurcation at the equilibrium of the system. At last, some 

numerical simulation results are confirmed that the 

feasibility of the theoretical analysis. 

 
Index Terms— Fluid flow, Communication delay, Hopf 

bifurcation, Stability, Numerical simulation 

I. INTRODUCTION 

Nowadays, with the rapid advancement of science and 
technology, the Internet congetion control becomes a serious 
problem in practice use. When the required resources exceed 
the network capacity, it will cause congestion, which may lead 
to the loss of information and even the destruction of the 
whole system.Thus, the methods of Internet congestion 
control are very important [1-3] . Many congestion control 

mechanisms are developed to avoid the system congetion and 
collapse [4-7] . TCP  and AQM are central to these 

congestion control mechanisms [8-10] . At present, Many 

researchers have studied the fluid flow model and obtained 
many conclusions [10-13] . 

In 2000, Misra et al. first proposed the fluid flow model of the 
differential equation of TCP/AQM [11] . Here we give a 

simplified edition of the model, which the TCP timeout 
mechanism is ignored. Such a model is described by the 
following nonlinear differential equations [11] : 
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where ( )W t  indicates the average value of 

TCP windowsize (packets), ( )q t  represents the average 
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queue length (packets), ( )N t is the number of TCP  sessions 

and C  is the queue capcity (packets/s), ( )p g  is the 

probability function of a packet mark and ( )R t  is the 

round-trip time which consists of the queuing delay and 
propagation delay. Both the queue length ( )q t  and 

windowsize ( )W t  are positive and bounded variables. When 

the loss probability is made roughly proportional to average 
queue length, namely ( ) ( )p t Kq t [8] .so Eq. (1) becomes  
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In [14] , it shows that the Eq. (2) can be approiximated by 
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However, generally speaking, the queue delay is much 
smaller than the propagation delay. So queue delay can be 
ignored in the differential equation about the change of the 
windowsize. But, in the queue differential equation, since the 
change of queue length is directly related to the queue delay 
and a trifling variance of the queue will directly affect the 
propability of the packet mark and even the whole congestion 
state. So the delay cannot be completely ignorced. Hence, we 
propose a modified fluid flow model as follows: 
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II. STABILITY AND LOCAL HOPF BIFURCATION ANALYSIS 

In this section, we only discuss the problems of the Hopf 
bifurcation and stability for the unique positive equilibrium 

point 0 0( , )W q . Then it satisfies 
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Let 1 0( ) ( )x t W t W  , 2 0( ) ( )x t q t q  . The 

linearation of system (4) at 0 0( , )W q  is  
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where 
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The correspoding characteristic equation of system (4) is as 
follows. 
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Lemma 2.1 For the system (4), assume that 0 0
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satisfied.Then Eq.(8) has a pair of purely imaginary roots 
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Proof. Let ( 0)i     is a solution of the 

characteristic equation (8), then 
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From (9) we obtain 
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Obviously, set 0k  , then  
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As a result, when 0R R , the characteristic equation (8) 

have a pair of purely imaginary root. This completes the 
proof. 

Lemma 2.2 Let ( ) ( ) ( )R R i R     be the root of (8) 

with 0( ) 0R   and 0 0( )R   then we have the 

following transversality condition 
0
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Proof. By differentiating both sides of Eq. (8) with regard to 

R  and applying the implicit function theorem, we have   
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Since 1 2 10, 0, 0a a b    and 0 00
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. The proof is completed. 

Lemma 2.3 For Eq. (8), when 0R R , all of his roots have 

negative real parts. The equilibrium 0 0( , )W q  is locally 

asymptotically stable, and system (4) produces a Hopf 

bifurcation at the equilibrium 0 0( , )W q  when 0R R .  

By applying the Hopf bifurcation theorem for delayed 
differential equation and the three lemmas [15] , we have the 

following results.  
Theorem 2.1.  For system (4), the following conclusions 
hold: 

If 0R R , the equilibrium point is loaccly asymptotically 

stable. 

If 0R R ,model (4) exhibits a Hopf bifurcation. 

If 0R R , then the equilibrium point is unstable.  

III. NUMERICAL SIMULATION 

In this section, we present numerical results to confirm the 
analytical predictions obtained in the previous section. For a 
consistent comparision, we choose the same parameters as 
follows [16]   

 50; 0.001; 1000.N K C    

From (10), we polt 0R  relationship with R  in Fig.1. we kow 

that if 0.179008R   then 0R R  which indicates that the 

model (4) is stable. Namely, Hopf bifurcation occurs when 

0.179008
C

R   . 

If we choose 0.17R  , which is a little less than 0R , from 

the corresponding analysis in Section 2, we get 

0 0 1 2 13.4; 173.01; 3.46021; 0.034; 294.118;W q a a b        

 0 02.38085; 0.20332.R    

Since 0R R , the equilibrium point 0 0( , )q  of the system 

(4) is asymptotically stable proved by numerical simulations 
in Figs. 2-5. 

If we change the delay R  passes through to the critical value 

0.179008
C

R  , a Hopf bifurcation occurs, namely, there 

are periodic solutions bifurcating out from the equilibrium 

point 0 0( , )q . We can choose 0.19R   , then a hopf 
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bifurcation occurs as shown in Figs. 6-9, which indicate that 
there exists a stable limit cycle and is obviously consistent 
with the theorem in Section 2. Besides, when 

0.179008R  , we get 0 0.179008R   and the periodic 

solutions occur from the equilibrium point 0 0( , )q  which 

we can see in the Figs. 10-13.  
 

 
Figure 1. Relationship curve between 0R  and R . 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Phase plot of ( )W t  with 0.17R   

 

 
Figure 3. Phase plot of ( )q t  with 0.17R  . 

 

 

 
Figure 4. State plot of ( )W t  with 0.17R  . 

 

 
Figure 5. State plot of ( )q t  with 0.17R  . 

 

 
Figure 6. Phase plot of ( )W t  with 0.19R  . 

 

 
Figure 7. Phase plot of ( )q t  with 0.19R  . 
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Figure 8. State plot of ( )W t  with 0.19R  . 

 

 
Figure 9. State plot of ( )q t  with 0.19R  . 

 

 
Figure 10. Phase plot of ( )W t  with 0.179008R  . 

 

 
Figure 11. Phase plot of ( )q t  with 0.179008R  . 

 

 
Figure 12. State plot of ( )W t  with 0.179008R  . 

 

 
Figure 13. State plot of ( )q t  with 0.179008R  . 

 

IV. CONCLUSION 

A modified fluid flow model of congestion control was 
studied by this paper. Through the above theoretical analysis, 
We have obtained the conditions that the system produces 
Hopf bifurcation. we also get that exists a critical value of 
communication delay for the stability of the system. When the 
delay of the system is less than this critical value the entire 
system is stable. we get that the system loses it stability and a 
Hopf bifurcation occurs when the communication delay 
passes through the critical value. The system will be 
congested or even collapse when the delay increases to large. 
Some computer simulation results have been presented to 
confirm the validity of the theoretical analysis. 
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