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 
Abstract— The Traveling Salesman Problem (TSP) is 

solved using genetic algorithms. Two alternative ways to 

represent the solution (genes in series and genes in two 

columns) are used and different mutation rates as well as 

different population sizes are considered. Two computer 

programs are created to solve the problem and yield 

experimental data. The data is analyzed and discussed 

and conclusions are derived. An equation relating the 

percentage of the population with the same solution (w) 

and the mutation rate (g) is discussed. This equation and 

the tradeoff between population size, mutation rate and 

chromosome portraying method are the theoretical 

contributions of this work, as well as an innovative way to 

solve the TSP, which is a hard problem to solve using 

traditional optimization, such as linear programming. 

 

Index Terms— Traveling Salesman Problem, Genetic 

Algorithms, Evolutionary Computation 

 

I. INTRODUCTION 

The Traveling Salesman Problem (TSP) is a very 

well-known problem in operations research, in which one 

salesman tries to visit n cities in a given tour. The problem is 

to find the sequence of visits that minimizes the sum of all of 

the distances between cities [1]. Checking all possible tours 

requires doing n! additions. For a sample problem with 27 

cities, that means 1.088886945×10
28

 sums. A modern 

computer is capable of approximately one billion operations 

per second [2]. That means it would take 345,283,785,200 

years to cover all possibilities a brute force approach. An 

impossible problem! 

This problem can be solved using linear programming [3], 

but for large values of n it takes a relatively long time (hours, 

days, months, or even years) to come up with a solution. The 

approach is to use genetic algorithms. Although genetic 

algorithms do not guarantee an optimal solution, they provide 

good solutions and sometimes even the optimal solution in 

little time. Moreover, a solution (although maybe not the 

optimal) is always available. It is not necessary to wait until 

the program finishes. The user may request the best solution 

found so far at any time. 
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Genetic algorithms rely on evolution to find a solution. 

Each individual in the population represents one possible 

solution. The individuals are represented so that it is possible 

to create new generations by reproducing the best fitted 

individuals of the previous generation. 

Two alternative ways to represent TSP tours were 

considered. The first one is by arranging the cities to visit in a 

row. The second one is to arrange the cities in two columns. 

Each approach entails a different way of reproducing the 

population. Both approaches were tried with different 

mutation rates to see which approach leads faster to the 

solution or provides the optimal solution. 

First, the methodology is discussed. Second, the theory on 

the TSP and genetic algorithms is reviewed. Third, the 

experimental results are considered. Finally, the findings are 

discussed and conclusions are derived. 

II. METHODOLOGY 

The methodology is basically the scientific method. The 

scientific method is a series of steps, which are iterated in a 

series of successive and ever increasingly closer 

approximations to the truth. A theoretical approach had to 

come up based on the observation of the problem under study, 

test the theory in the laboratory in a series of experiments, and 

if the results were not within theoretical parameters, there was 

the need to go back to the theory and try to be more accurate 

based on the available observations. 

Throughout the years, the scientific method has been 

discussed thoroughly. The specific approach used is based on 

the ideas presented by Gauch Jr. [4] and Wilson [5], which 

consists of the following steps: 

1. Observation. The direct observation from reality is the 

basis of all discoveries. The problem was first considered 

and then it was realized that there are at least two different 

ways to portray the information: genes in series and genes 

in two columns. 

2. Hypothesis. The right combination of mutation rate, 

population size, and model (genes in series or genes in 

columns) are important to determine how good the 

solution is and how fast the solution is reached. 

3. Theory. What is to know about the TSP was considered as 

well as its implementation using genetic algorithms. 

4. Experiment. Two computer programs using Delphi were 

created to solve the two genetic algorithm problems and 

obtain data for each representation, each possible 

mutation rate and each population size. 

5. Conclusions. After analyzing the data obtained in the 

laboratory, the results were considered and discussed. 

Finally, conclusions are derived. 
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III. THEORY 

A. The Traveling Salesman Problem 

The Traveling Salesman Problem (TSP) is a classical 

problem in operations research. There are n cities, and it is 

supposed a salesman (or as an extension a load, a truck, or a 

plane) has to visit each and every city in order to minimize the 

total distance travelled. 

The TSP is a NP problem, that is, the number of steps 

required to solve it grows exponentially as the problem size 

grows. The above means that to solve the TSP for typical 

examples from real life, where there is a fleet of hundreds of 

Wonder or Coke delivery trucks, or any other case that can be 

thought of, requires a prohibitive number of steps to obtain 

the solution by solving using linear programming, for 

example. That is, the computer would take too much time 

(years maybe) to solve a problem large enough so that it 

matters in real life. 

Table 1 shows the distances between n cities. Notice that it 

is required to specify the distance between city 1 and city j, 

where j goes from 2 to n, which is done in the first row. For 

i=1 and j=1, there is a distance of zero, because the distance 

between city one and city one is none. However, to avoid 

going from one city to the same one, a very large distance is 

assigned, such as 100,000 (for all i = j). In the second row, 

there is the distance between city 2 and city j (where j goes 

from 3 to n; notice that j=1 is not included, because the 

distance between city 2 and city 1 is already in the first row as 

the distance between city 1 and city 2). And so on. In general, 

the distance between city i and city j, where j goes from i+1 to 

n, is denoted as dij. Notice that in this way the upper triangle of 

distances is obtained, marked in grey, which is duplicated in 

the lower triangle of distances. However, it is possible in 

reality that the distance to go from city i to city j (dij) may be 

different than the distance to go from city j to city i (dji). 

 

Table 1. Distances between cities for the TSP. 

City\City 1 2 3 … n 

1 100,00

0 

d12 d13 … d1n 

2 d21=d12 100,00

0 

d23 … d2n 

3 d31=d13 d32=d23 100,00

0 

… d3n 

… … … … … … 

n dn1=d1n dn2=d2n dn3=d3n … 100,00

0 

 

B. Genetic Algorithms 

Genetic algorithms were developed by John Holland [6] 

during the 1960s and 1970s and popularized by one of his 

students, David Goldberg [7]. Genetic algorithms rely on the 

principles of genetics and natural selection to find solutions. 

De Jong [8] showed the usefulness of genetic algorithms for 

function optimization and tried to find optimal parameters for 

genetic algorithms. 

Some of the advantages of genetic algorithms, taken from 

Haupt & Haupt [9], are: 

 Optimizes with continuous or discrete variables. 

 Doesn't require derivative information. 

 Simultaneously searches from a wide sampling of the cost 

surface. 

 Deals with a large number of variables. 

 Is well suited for parallel computers. 

 Optimizes variables with extremely complex cost surfaces 

(they can jump out of a local minimum). 

 Provides a list of optimum variables, not just a single 

solution. 

 May encode the variables so that the optimization is done 

with the encoded variables. 

 Works with numerically generated data, experimental 

data, or analytical functions. 

 

Genetic algorithms are very intriguing and they produce 

stunning results when traditional optimization techniques, 

such as linear programming, fail miserably. Sometimes, such 

as when evaluating an analytical function, calculus may 

outperform genetic algorithms. Also, the fact that a large 

population of solutions is required means that traditional 

methods may find the solution faster. However, if a parallel 

computer is available, genetic algorithms can take advantage 

of that because each processor may calculate the fitness of a 

group of individuals. Genetic algorithms are ideally suited for 

parallel computing. 

There are five steps in the genetic algorithm process: 

1. Encoding (genesis): Each individual in the population is 

generated such that it portrays one possible solution in a 

given string and it is possible to do the crossover using 

such encoding scheme. 

2. Evaluation: Each solution of the individuals in the 

population is evaluated to find how well it fits the solution 

to the problem and each individual is assigned a score. 

3. Crossover: Based on the score, only the best individuals 

are crossed or reproduced to create new individuals. 

4. Mutation: In some cases, random changes or twitches are 

applied to some individuals randomly chosen for such 

purpose. 

5. Decoding: After the process has finished, given so many 

generations have passed, the solution encoded in the 

representation of the individual with the best score is 

decoded and transformed into a solution to the problem. If 

an optimum (or at least a local optimum) has been found, a 

relatively large percentage of the population will have 

found such best solution. 

C. Solving the TSP with Genetic Algorithms 

It is possible to solve the traveling salesman problem using 

genetic algorithms, although Kirkpatrick, Gelatt and Vecchi 

[10] use simulated annealing to solve the problem. There are 

several ways to do the encoding. An encoding known as 

matrix representation, discussed by Homaifar, Guan and 

Liepins [11], as well as Michalewicz [12], is possible. In 

matrix representation, the tours are represented in a binary (0 

and 1) matrix so that if there is a one in row i, column j, that 

means the salesman is going from city i to city j. This kind of 

matrix is also called a precedence matrix in operations 

research [1][3]. 

The matrix shown in Figure 1 indicates that the salesman is 
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going from city 1 (row 1) to city 2 (because in row 1, the one 

is in column 2). Also, that from city 2 goes to city 3 and from 

city 3 to city 1. As can be seen, the tour matrix from Figure 1 

is valid because it constitutes a valid tour, that is, there are no 

repeated sequences such as, for example, having the 

possibility of going from city 1 to both cities 2 and 3. 

 

Figure 1. Matrix representation using a precedence matrix. 

 
 

The problem with the matrix representation is the crossover 

operation. In crossover (or reproduction) the characteristics 

of the individual represented by their chromosome (encoding) 

are mixed to create new individuals. However, matrix 

representation as it is does not guarantee valid offspring. 

The TSP problem can also be represented by a string of 

integers in two different ways. The first one, given by 

Homaifar et al. [11], Michalewicz [12], Goldberg [7] and 

Wroblewski [13], is using a string, such as a1a2a3…an. The 

previous string means that the salesman would go from city a1 

to city a2, from a2 to a3, and so on until city an, and also from 

city an to city a1 in order to complete the circuit. 

For convenience, the string notation is going to be used. 

The encoding and decoding operations are very 

straightforward to do. However, the evaluation, crossover and 

mutation operations have to be explained. The evaluation 

operation is simply taking the distance between the first and 

second cities, adding the distance between the second and 

third city, and so on until city n, where the distance between 

city n and city 1 is added to complete the circuit. 

The crossover operation is a little bit more complicated to 

explain. Let say there are strings with n cities. The best first 

half of individuals is taken and two of them are chosen at 

random from this pool of candidates. The first individual 

chosen is the male, the second the female. A random number 

between 0 and n is obtained. Let say such number is d. This 

random number indicates the breaking point in the male. If the 

number obtained is n, it means that all of the numbers in the 

male string must pass to the offspring (cloning of the male). If 

the number is zero, it means all the numbers in the female pass 

intact to the offspring (cloning of the female). If a number 

between 1 and n-1 is obtained, both individuals have to be 

combined. The first d numbers from the male are taken, and 

then all the non-repeating numbers from the female are taken 

to create a new sequence of numbers in which the left side of 

the male is preserved. 

Consider the example shown in Figure 2, where n=5. The 

top numbers in the male chromosome are the cutting 

positions. Zero is at the beginning and five at the end. Let say 

d = 2. The cutting point in the male is indicated at the top of 

Figure 2. All the numbers to the left of the cutting point of the 

male are preserved in the offspring, so that the offspring 

chromosome begins with 5-3. To complete the sequence in 

the offspring, all the valid numbers from the female 

chromosome are taken. The first number in the female is 3, 

but 3 cannot be used because there is already a 3 from the 

male between position 1 and 2. The next number in the female 

is 4, and since 4 is not repeated, it is added. The third number 

in the female is 5, but that is not valid because the offspring 

already has a five. The fourth number in the female is 2, and 

since it is valid (not repeated) it is added. Finally, the fifth 

number in the female chromosome is 1, which is also valid 

and added to the offspring. In this way valid chromosomes as 

offspring can be generated. 

 

Figure 2. Crossover operation for genes in series. 

 
 

It is also important to notice that apparently similar 

chromosomes may refer to the same tour. Consider for 

example n=5 and a tour such as 5-3-1-2-4. The chromosome 

3-1-2-4-5 represents the same information as 5-3-1-2-4 

because city 5 is at the end in the chromosome 3-1-2-4-5, but 

since the chromosomes are circular, after city 5 follows city 3, 

which is the same as in chromosome 5-3-1-2-4. The rest of the 

sequence after this is the same. Another variant is to invert the 

tours. Chromosome 4-2-1-3-5 is the same as chromosome 

5-3-1-2-4 and chromosome 3-1-2-4-5, because the tour is still 

the same even though the order has been reversed. 

Another variant being considered is to arrange cities on 

columns instead of series. This new arrangement changes the 

way in which the crossover occurs. Figure 3 shows the same 

case as the one in Figure 2. Notice that now, genes are 

arranged in two columns. For reproduction, the left side of the 

male is taken (5-1-4) and the right side is completed using the 

sequence from the female chromosome. In this case, the first 

city is 3, and since there is no 3 in 5-1-4, it is added. The 

second city is 4, but it is not included since 5-1-4 already 

contains 4. The third gene is 5, which is also not included 

since 5 is already in the sequence of the left column in the 

offspring (5-1-4). Then comes 2, which is included for not 

being in the left side sequence. Finally, there is 1, which is not 

included (the chromosome has been completed anyway), 

because it is already in the left side of the male chromosome 

(5-1-4). 

Male 

Female 

Offspring 

3 - 4 - 5 - 2 - 1 
0 1 2 3 4 5 

5 - 3 - 4 - 2 - 1 
0 1 2 3 4 5 

5 - 3 - 1 - 2 - 4 
0 1 2 3 4 5 

0 1 0 

0 0 1 

1 0 0 

1 

2 

3 

1 2 3 
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Figure 3. Crossover operation for genes in columns. 

 
Mutation is very simple to perform. It is just a matter of 

drawing a random number for each offspring and if it is less 

than or equal to a given mutation percentage rate, w, then such 

individual is to mutate. To perform the mutation on any given 

individual, two random numbers are simply drawn between 1 

and n and swap the cities in those positions. Notice that now 

the positions do not refer to the space between the cities but to 

the space of the cities themselves. 

There is a limit to mutation. Let g be the percentage of the 

population required to have the same solution in order to 

finish the run. Also, let w be the mutation rate, that is, the 

percentage of the population that is expected to mutate in a 

given iteration. Assume that for a particular generation there 

is, before mutation, 100% agreement in the solution and that g 

= 0.70. Since 100% > 70%, if there were no mutation, the run 

would be finished. Also, let say that the mutation rate is 50%. 

Since out of the 100%, 50% of the population is expected to 

mutate, we would end up having only 50% of the population 

untouched with the original solution. In this situation, the 

algorithm would never converge. In general, equation (1) 

applies. 

 

 g+w < 1 (1) 

 

Equation (1) indicates that in order for the algorithm to 

have a chance to converge, g+w must be less than one. A 

value for g of 0.7 (70%) is used. Clearly, a mutation rate of 

50% (w=0.5) is too high and the algorithm would never 

converge under such conditions since 0.7+0.5 = 1.2 > 1. 

IV. TESTING 

To test whether or not a given encoding scheme (it could be 

genes in series or genes in columns) implies reaching the 

solution faster or assuring an optimal solution, a number of r 

tests are going to be conducted. One of the variables in the 

tests is the encoding mechanism: series or columns. Another 

variable is the mutation rate: 5%, 10%, 20% or 50%. 

There is also a final variable. Considering populations 

throughout human history, the question concerning the size of 

the population having an impact in the speed in which the 

population evolved arises. In the distant past, when our 

ancestors were in the stone-age period, populations were 

relatively small. Now there are large populations. Does 

population size have any effect in the speed the population is 

evolving? Translating the idea into genetic algorithms, a third 

variable for the tests was derived: population size (m). A 

relatively large population size is considered, such as 1,024 

individuals and then divide that population by 16, which 

makes 64 individuals, for a second population size. The 

number of generations it takes for the population to reach a 

70% (g = 0.7) having the same solution is considered. This 

variable is taken unto account for both scenarios (genes in 

series and genes in columns) and for all mutation rates (5%, 

10%, 20%, and 50%). 

For testing, a medium-size problem is used. Twenty-seven 

of the most important cities in México are being considered. 

The number each city has been assigned and the names of the 

cities are given in Table 2. 

 

Table 2. List of cities. 

Number City 

1 Acapulco 

2 Aguascalientes 

3 Cancún 

4 Cuernavaca 

5 Chihuaha 

6 Durango 

7 Guadalajara 

8 Hermosillo 

9 León 

10 Manzanillo 

11 Mérida 

12 México City 

13 Morelia 

14 Monterrey 

15 Nuevo Laredo 

16 Oaxaca 

17 Pachuca 

18 Puebla 

19 Querétaro 

20 San Luis Potosí 

21 Tampico 

22 Tijuana 

23 Toluca 

24 Torreón 

25 Veracruz 

26 Villahermosa 

27 Zacatecas 

 

The distances between cities are given in the Appendix. 

This problem using linear programming and 

LINDO/LINGO was solved. The optimal solution to the 

problem is: 1-23-19-13-10-7-9-2-20-27-6-8-22-5-24-14-15- 

21-25-26-11-3-16-18-17-12-4. The total distance for this 

solution is 12,216 km. Notice that this solution is cyclical, and 

after the last city (4) comes the first city again (1). The fact 

that the solution is cyclical also means there are 27x2 = 54 

Male Female 

Offspring 

5 - 3 

1 - 2 

4 

3 - 4 

5 - 2 

4 

5 - 3 

1 - 2 

4 
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alternative ways of showing the same solution. 

Positions for the cities were obtained in a map. Figure 4 

shows the optimal route on a virtual map of México 

(coordinates are in pixels). In theory, the optimal solution 

should have no crossings. It can be seen in the map of Figure 4 

that there are no crossings. 

 

Figure 4. Route for the optimal solution. 

 
 

In order to get an idea of the matching between the routes in 

Figure 4 and an actual map of México and its routes, take a 

look at Figure 5. 

 

Figure 5. Map of Mexico’s routes. 

 
 

The average of the number of generations it takes to reach 

70% agreement in the solution (run or r) is calculated. There 

is also another important matter: how many runs should be 

considered? 

To calculate sample size (r), the formula for sample size 

known as the standard deviation () was used. The formula 

was taken from a book by Kvanli, Guynes and Pavur [14] and 

it is detailed in equation (2). 

 

  (2) 

 

Z/2 is the value of the normal distribution for a given 

confidence interval (). In this case, Z/2 is equal to 1.96, 

which implies a confidence of 95%. The value for  is the 

standard deviation of the population, which typically is 

approximated using the standard deviation of the sample. 

Since there is no such value, it is possible to approximate it 

using equation (3). 

 

  (3) 

 

The reason for the formula in equation (3) is that it is 

known as an empirical rule that 95.4% of the population will 

be between -2 and +2. Let L = -2 be the minimum 

value expected in the sample and H = +2 be the maximum 

value expected, so that H-L = 4. Since the statistic indicates 

the number of runs required, the maximum value for such 

statistic would be r (H = r) and the minimum value would be 

zero (L = 0). Substituting H and L into equation (3) yields 

equation (4). 

 

  (4) 

 

Substituting  from equation (4) into equation (2) yields 

equation (5). 

 

  (5) 

 

Solving for r from equation (5) yields equation (6). 

 

  (6) 

 

The only parameter that is not being considered is E, which 

is the absolute error. A value for  E of 7 is used. Applying 

equation (6) yields the sample size: 200, as indicated in 

equation (7). 

 

  (7) 

V. RESULTS 

What is a run? There are five steps in genetic algorithms as 

seen in section 3.B. These steps are: 1. Encoding/Genesis, 2. 

Evaluation, 3. Crossover, 4. Mutation, and 5. Decoding. After 

creating a population (step 1), the fitness of all individuals in 

such population is evaluated (step 2), then comes to reproduce 

them according to the scheme specific to such sequence (step 

3) and some of the individuals mutate according to a given 

mutation rate (step 4). Then, steps 2, 3, and 4 are iterated a 

number of times (i) until there is at least g×100% of 

individuals with the same solution. A run is precisely such 

sequence of repetitions for a given population. After there is 

agreement on the solution, the number of generations it took 

to reach such result, the total distance for the given solution 

string, as well as the result itself (the sequence of cities to 

visit) are recorded in files called, by default, output1.txt and 

output2.txt (step 5). A total of 200 runs are used and the 

resulting data is recorded. The average of the numbers of 

generations and total distances for all 200 runs is calculated. 

The first set of 200 runs is for a mutation rate of 5% 

(w=0.05) and a population size of 1,024 (m=1,024) using 

genes in series. Figure 6a shows an XY scatterplot of the data. 

Right next to it, in Figure 6b, is the same mutation rate but for 

a population of 64 (m = 64). 
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Figure 6. 200 runs for w = 0.05 having genes in series. 

a. m = 1,024 

 
 

b. m = 64 

 
 

The best run for m = 1,024 generated a route with the same 

(minimum) total distance of 12,216 km. The route obtained 

was 19-13-7-10-9-2-20-27-6-8-22-5-24-15-14-21-25-26-11- 

3-16-18-17-12-4-1-23. This route is the same as the minimum 

total distance route obtained using linear programming, 

except for the pairs 7-10 and 15-14, which are reversed. 

Notice that the linear programming solution starts with 

1-23-19-13…, whereas this solution starts with 19-13… Both 
are the same except for the two pairs mentioned. 

Nevertheless, both have the same minimum total distance of 

12,216 km. 

Figure 7 and Figure 8 have the same results for mutation 

rates of 10% and 20%, respectively. As expected, there could 

not be obtained results for a mutation rate of 50% given the 

fact that g+w would be equal to 1.2, which is greater than 1; 

see equation (1). 

 

Figure 7. 200 runs for w = 0.10 having genes in series. 

a. m = 1,024 

 

b. m = 64 

 
 

Figure 8. 200 runs for w = 0.20 having genes in series. 

a. m = 1,024 

 
b. m = 64 

 
 

The same set of results was obtained for genes in columns, 

as shown in Figure 9, Figure 10, and Figure 11 for mutation 

rates of 5%, 10%, and 20%, respectively. Once again there 

could not be results for a mutation rate of 50%. 

 

Figure 9. 200 runs for w = 0.05 having genes in columns. 

a. m = 1,024 
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b. m = 64 

 
 

Figure 10. 200 runs for w = 0.10 having genes in columns. 

a. m = 1,024 

 
b. m = 64 

 
 

Figure 11. 200 runs for w = 0.20 having genes in columns. 

a. m = 1,024 

 
 

 

 

 

 

b. m = 64 

 
 

The average number of generations of each set of 200 runs 

was also calculated, which is shown in Figure 12a, as well as 

the average total distance of each set of 200 runs, shown in 

Figure 12b. 

 

Figure 12. Average numbers for each set of 200 runs. 
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b. Total distance 
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VI. DISCUSSION AND CONCLUSION 

From Figure 6 it can be seen that it takes less generations 

(usually about 40) to converge when the population is small 

(m = 64) as opposed to a large population (m = 1,024). 

However, the results obtained are worse when the population 

is small, which makes sense because a larger population 

allows the system to consider a wider set of alternatives. 

The same can be said for higher mutation rates. Notice that 

for a mutation of 10% (w = 0.10) and for a mutation of 20% 

(w = 0.20) several optimal solutions were found: 6 for 10% 

mutation and 17 for 20% mutation. Also notice that mutation 

tends to increase the number of generations it takes to reach a 

solution. Apparently, a higher mutation rate tends to improve 

the solution, as long as the mutation is not too high to break 

the rule from equation (1). 

For the case of genes in column, none of the 200 runs of 

each type of mutation and population size achieved optimal 

results. Comparing Figure 6 and Figure 9 it can be seen that it 

takes genes in columns a considerably shorter number of 

generations to reach agreement on the solution. About 40 

generations were required to reach a solution for genes in 

columns having a mutation rate of 5% and a large population 

size of 1,024, whereas it took about 100 for genes in series. 

Apparently, reproducing the population with genes in 

columns reaches a solution faster. Also, using genes in 

columns seldom yields an optimal solution. 

Figure 12a summarizes the results by considering the 

average of all the figures (total number of generations) for 

each case: genes in series with m = 1,024, genes in series with 

m = 64, genes in columns with m = 1,024 and genes in 

columns with m = 64. It can be seen that the case with the 

lowest average number of generations to reach a solution is 

genes in columns with a small population size, followed by 

genes in series with a small population size. Next is genes in 

columns with a large population size and finally genes in 

series with a large population size. Clearly, if the idea is to 

reach a solution fast there should be used a small population 

size. Also, as the mutation rate increases, the average number 

of generations to reach a solution increases too. The extreme 

example is the case of genes in series, a large population (m = 

1,024) and a high mutation rate (w = 0.20), exceeding 700 

generations on average. 

Figure 12b shows the same four cases applied to the 

average total distance of the resulting tour obtained. The case 

with the minimum averaged total distance is series with a 

large population closely followed by columns with a large 

population. The worst cases were series with small population 

and finally columns with small population. Thus, in order to 

achieve a better result (minimum total distance of the tour), it 

is best to use a large population size. Notice also that as the 

mutation rate increases, the results are better for all four cases. 

In short, a small population size increases speed but 

reduces performance. Also, a large mutation rate increases 

performance. Working with genes in series increases 

performance, whereas genes in columns reduces the number 

of runs required to reach a solution. For optimal performance 

(better result), it is recommended to use a large population, 

large mutation rate and genes in series. The mutation rate 

should be 10% or 5% under the largest value allowed 

according to equation (1). In the case under study, the 

population limit (g) is 70%. Thus, the best mutation rate 

should be 100%-70%-10% = 20% or maybe even 

100%-70%-5% = 25%. For optimal speed (faster to the 

result), it is recommended to use a small population, small 

mutation rate, and genes in columns. Figure 13 summarizes 

the results obtained. 

 

Figure 13. Summary of findings. 

 
 

There is a tradeoff between the population size, the 

mutation rate, and the chromosome portraying method. If 

good performance (optimal solution) is the objective, a large 

population and large mutation rate, but not as large as to break 

equation (1), should be considered. This of course results in 

larger solution times, so a balance among the variables should 

be attained. If a fast result is the objective, a small population 

size and a small mutation rate should be used, but not so small 

as to render useless solutions. 

Once the target percentage of the population with the same 

result (g) has been decided, the best mutation rate (w) is 

simply between 1% and 5% below 1-g; that is between 

w=1-g-0.01 and w=1-g-0.05. 

 

 

Optimal result 

Slow to reach 

solution 
- Large population 

- Large mutation rate 

- Genes in series 

Speed 

Poor solution 
- Small population 

- Small mutation rate 

- Genes in columns 
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APPENDIX. DISTANCES AMONG CITIES 
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