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 
Abstract— Environmental systems can be realistically 

described by mathematical and numerical models of the 

system dynamics. These models can be used to predict the 

future behaviour of the system, provided that the initial 

states of the system are known. Complete data defining all 

of the states of a system at a specific time are, however, 

rarely available. Moreover, both the models and the 

available initial data contain inaccuracies and random 

noise that can lead to significant differences between the 

predicted states and the actual states of the system. A 

variety of models is used to describe systems arising in 

environmental applications, as well as in other physical, 

biological and economic fields. These range from simple 

linear, deterministic, continuous ordinary differential 

equation models to sophisticated non-linear stochastic 

partial-differential continuous or discrete models. The 

data assimilation schemes, with minor modifications, can 

be applied to any general model. Data assimilation 

schemes are described here for a system modelled by the 

discrete non-linear equations 

 
wherexk∈R

n
 denotes the vector of n model states at time tk 

and Mk,k+1 : R
n
 → Rn

 is a non-linear operator describing 

the evolution of the states from time tk to time tk+1. The 

operator contains known inputs to the system including 

known external forcing functions that drive the system 

and known parameters describing the system. 

 

      Index Terms— Ordinary differential equation, 

Kalman filter (ET KF), Kalman smoother (EnKS), 

Axisymmetric and Non-Axisymmetric Coupled model 

(ANAC). 

Broad Area : Mathematics 

I. INTRODUCTION 

  This is deliberately general; such statements can take many 

forms. Examples include categorical or discrete statements 

(e.g. “including isopycnal mixing improves ocean circulation 

models”), logical propositions (e.g. “increasing soil 

temperatures lead to increased soil respiration”) or 

quantitative statements like “the Amazon forest is a sink of 

between 1 and 2 pgCy
−1

 ”. The choice of the set of events we 

consider is the first one we make setting up any data 

assimilation problem. We require that any events which are 

logically incompatible are disjoint (mutually exclusive) and 

that the set of events is complete. 
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The concept of probability is so simple and universal that it is 

hard to find a definition which is more than tautology. It is a 

function mapping the set of events onto the interval (0,1). Its 

simplest properties, often called the Kolmogorov axioms 

reflect the definition of events, i.e that the probability of the 

whole space is 1, and that the probability of the union of two 

disjoint events is the sum of their individual probabilities. If 

the events are part of 30 a continuous space we can also define 

a probability density function (PDF) so that the probability 

that x ∈ (a, b) is the integral or its multi-dimensional 

counterpart. 

II. ORDINARY DIFFERENTIAL EQUATION 

In mathematics, an ordinary differential equation (ODE) is 

a differential equation containing one or more functions of 

one independent variable and its derivatives. The 

term ordinary is used in contrast with the term partial 

differential equation which may be with respect to more 

than one independent variable. Among ordinary differential 

equations, linear differential equations play a prominent role 

for several reasons. Most elementary and special functions 

that are encountered in physicsand applied mathematics are 

solutions of linear differential equations (see Holonomic 

function). When physical phenomena are modeled with 

non-linear equations, they are generally approximated by 

linear differential equations for an easier solution. The few 

non-linear ODEs that can be solved explicitly are generally 

solved by transforming the equation into an equivalent linear 

ODE. Ordinary differential equations (ODEs) arise in many 

contexts of mathematics and science (social as well 

as natural). Mathematical descriptions of change use 

differentials and derivatives. Various differentials, 

derivatives, and functions become related to each other via 

equations, and thus a differential equation is a result that 

describes dynamically changing phenomena, evolution, and 

variation. 

III. LITERATURE REVIEW 

Sakov et al reviewed the problem of assimilation of 

asynchronous observations, or four‐dimensional data 

assimilation, with the ensemble Kalman filter (EnKF). We 

show that for a system with perfect model and linear dynamics 

the ensemble Kalman smoother (EnKS) provides a simple and 

efficient solution for the problem: one just needs to use the 

ensemble observations (that is, the forecast observations for 

each ensemble member) from the time of observation during 

the update, for each assimilated observation. Cartis et al 

present DFO-GN, a derivative-free version of the 

Gauss-Newton method for solving nonlinear least-squares 

problems. As is common in derivative-free optimization, 

DFO-GN uses interpolation of function values to build a 

model of the objective, which is then used within a 
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trust-region framework to give a globally-convergent 

algorithm requiring O(ϵ−2) iterations to reach approximate 

first-order criticality within tolerance ϵ. Bishop et al called the 

ensemble transform Kalman filter (ET KF) is introduced. 

Gerrit et al discusses an important issue related to the 

implementation and interpretation of the analysis scheme in 

the ensemble Kalman filter. It is shown that the observations 

must be treated as random variables at the analysis steps. That 

is, one should add random perturbations with the correct 

statistics to the observations and generate an ensemble of 

observations that then is used in updating the ensemble of 

model states. Cao et al describe Four‐dimensional variational 

data assimilation (4DVAR) is a powerful tool for data 

assimilation in meteorology and oceanography. However, a 

major hurdle in use of 4DVAR for realistic general circulation 

models is the dimension of the control space (generally equal 

to the size of the model state variable and typically of order 

10
7–10

8
) and the high computational cost in computing the 

cost function and its gradient that require integration model 

and its adjoint model. Romina et al describe a novel technique 

for imaging and data assimilation of the topside ionosphere 

and plasmasphere. The methodology is based upon the 

three‐dimensional variational technique (3DVAR), where an 

empirical background model is utilized. Griffith et al describe 

Data assimilation aims to incorporate measured 

observations into a dynamical system model in order to 

produce accurate estimates of all the current (and future) 

state variables of the system. Johnson et al describe the very 

large nonlinear dynamical systems that arise in a wide range 

of physical, biological and environmental problems, the data 

needed to initialize a numerical forecasting model are seldom 

available. To generate accurate estimates of the expected 

states of the system, both current and future, the technique of 

‘data assimilation’ is used to combine the numerical model 

predictions with observations of the system measured over 

time. 

IV. PROPOSED METHODOLOGY 

The sawtooth instability is a relaxation oscillation in the 

centre of the plasma at large electric currents, mainly 

observed through oscillations in electron temperature and 

density, followed by subsequent movement of particles and 

energy as a heat pulse from the centre of the plasma to the 

boundary. Edge-localised modes occur during sufficient 

increase of input power, when the edge of the plasma, 

characterised by large differences in electron density and 

temperature, undergoes short heat and particle eruptions. In 

addition to instabilities being prone to nonlinear interactions, 

a wide range of spatial and time scales also make simulations 

of large scale behaviour of the tokamak plasma at high 

temperatures difficult and computationally demanding. 

However, simplifications of tokamak geometries under 

symmetry considerations enables the study of sawteeth and 

ELMs via simple ordinary differential equation (ODE) 

models that reproduce their behaviour as outlined in [3]. 

The simplest coupled equations called Axisymmetric and 

Non-Axisymmetric Coupled model (ANAC), observed to 

qualitatively fit the experimental data, are the following 

 

where the dot notation represents derivatives with respect to 

time t. The final goal is to perform data assimilation with this 

model. However, due to complexity of the coupled system, 

simpler models are first considered for purposes of testing the 

data assimilation algorithm and the parameter estimation 

optimisation scheme, as well as to gradually build up 

complexity and understanding of the problem. 

CONCLUSION 

The new approach developed for initialisation of EnKF 

involves using observations over the first period for 

parameter and initial state estimation. The optimised values of 

parameters are used to initialise the model to be assimilated, 

whereas the optimised initial state is used for initialisation of 

the initial ensemble of state vectors. Synthetic data is 

generated by perturbing the solutions obtained by numerical 

integration at each time step, which is assumed to be fixed. 

The perturbations are randomly generated from the uniform 

or Gaussian distribution with variance σ2. Observations are 
subsampled from synthetic data so that the observation time 

step is a positive integer multiple of the numerical integration 

time step. 
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