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 
Abstract— Predator and prey system in ecological 

biological  are often  interfered by human exploiting 

activities in impulsive patterns. For a predator-prey  with 

Hapssell-Varley functional  interaction model, firstly, the 

complex dynamic behaviors  including  stability of 

internal equilibrium and the existence, Hopf  bifurcation, 

and the limit cycle are investigated roughly in this paper. 

Moreover, implementing multiple state feedback controls 

so that three order-1 periodic solutions driven are 

induced by disparate dynamics, respectively. Based on 

the method of successor function , we prove the existences 

of order-1 periodic solutions. 

 
Index Terms— Limit cycle;   State feedback control;   

Order-1periodic solution;  Successor function 

I. INTRODUCTION 

  Predators -prey models with Hassell-Varley functional 

response are one of the dominant themes in both ecology and 

mathematical ecology due to its universal existence and 

importance [1].  A general predator-prey model with 

Hassell-Varley type functional response may discuss in the 

[2]. However, ecological biological are often  interfered by 

human exploiting activities in impulsive patterns.  Impulsive 

model has been used to multiple fields widely with threshold , 

such as virus control [3,4], ecological management and pest 

govern[5,6]. Chen et al.[7,8] has obtained Geometric theory 

of the impulsive system . Qualitative properties such as 

theuniqueness , existence and stability of order-1 periodic 

solutions are probed with  the successor function [9].  

The control with threshold has been used widely in the 

predator-prey model [10,11], in which function response with 

Hassell–Varley  is absence. Meanwhile, the most of works 

have discussed a  the periodic solution induced by function 

response with Holling II . On the other hand, the limit cycle 

has been widely applied in the continuous dynamic system. 

However, it’s application in impulsive dynamical system  was 

little due to the difficulty caused by discontinuities even 

though Tang has done some study [12, 13].  

In this article, a predator-prey system model with 

Hapssell-Varley functional  is formulated to discuss the two 

type periodic solutions  induced by state feedback controls 

from disparate dynamics. The outline is instructed as follows: 

In Sect. 2, for the predator-prey model without pulse control, 
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the existence and stability of the interior equilibrium are 

discussed.  In Sect. 3,  periodic solution provided  by a stable 

interior equilibrium and the pulse strategy on limit cycle is 

discussed,  respectively. In Sect. 4, numerical simulations are 

carried out to illustrate  our results.  

 

II. A PREDATOR-PREY RESPONSE MODEL 

Georgescu, P [2] presented a general model with  

Hassell-Varley type functional  interaction. In this paper, it is 

assumed that 2/1  describe the terrestrial predators that 

form a fixed number of tight groups.  

Then a grazing system for predator )(P -prey )(H  with 

Hassell-Varley interaction is given: 

                                                    

 

 

）（ 1.2

1

31

31


































 

HmP

fH
DP

dT

dP

HmP

cHP

K

H
aH

dT

dH

       

                     

 

(1.)  The parameters Kfm ,,ca ，，  and D  are positive 

constants. 

(2.) H   and P  denote, respectively, the densities of prey 

and predator at time T .  The parameters DaK ,,  denote 

the constant carrying capacity,  prey intrinsic growth rate, 

predator death rate, respectively. 

(3.) The predation term )/( 3/1
HmPc   often represents a 

function response term.  m is half saturation coefficient and  

c  is the maximum consumption rate per herbivore. 

Next, using  PpKHhaTt  ,, , we can 

rewrite the model (2.1) in the form 
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 Before proceeding with the analysis of the model (2.1), we 

have to ensure that this system is well posed, i.e. its solutions 

are non-negative and bounded.  However，from (2.2),  it is 

easily observe that 

0),(lim),(lim
)0,0(),()0,0(),(




phGphF
phph

. Define 

0)0,0()0,0(  GF , we can yield F  and G are 

continuous on  0,0),(2  phphR .   

 

 

2.1 Stability analysis  

              

By simple calculation, we can obtain that system (2.2) has two equilibrium points )，O( 00  and )pE(h
** , , and O  

is a saddle point.  For ),( **
phE ， its Jocobian matrix of E is 
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The characteristic equation at E  is 

)5.2(0**
2 ， QP   

where 
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 Thus, we can summarize this in the following proposition. 

 

Proposition 2.1 For system (2.2), the stability of E is yielded. 

(a) The unique interior equilibrium ),( **
phE   is stable if 0* P . 

(b) E  is unstable and system (2.2) has a limit cycle if 0* P . Furthermore,  Hopf  bifurcation occurs providing *P =0. 

3. Periodicity driven by stable manifolds and limit cycle 

3.1 Periodicity driven by stable manifolds  

 

Let us assume that   system (2.2) has stable interior  equilibrium ),( **
phE . This  implies that all 

States drive to ),( **
phE .  It  may be undesirable from biological or economical view.  So in this section, we will take state 

feedback control strategy to reduce the quantities of prey and predator by h and p , respectively,  when the prey reaches the 

level 
*

1 pp  . Thus, we consider the following model: 
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Where, )( 
th  and )( 

tp  denote the level of predator and prey after a impulsive control is employed at time t . 

 

Theorem 3.1  Suppose  0* P  and  .10*
1  ，pp  ,  Then，for any 10  ,system (3.1) 

has an order-1 periodic solution. 

 

Proof .For system (4.1), Impulse set and phase set  can be denoted by 1: ppM   and 1)1(: ppN  ,  respectively. 

Phase set N intersects with the p nullcline 0/ dtdp  at point  E , and there exists a trajectory passing through E which 

is tangent to phase set 1)1(: ppN   (see Fig. 1(a)). This trajectory intersects the impulse set M as point 

)( 1phM
AME ， . Then the impulsive function  maps EM  to point EN  in N .  Using the features of trajectory, point EM  

locates on the upper right side of E , i.e., EM hh
E
 . So, there is an )10( **   satisfying EM hh

E
 )1( * .  

This means, the phase point EN and E  are uniform. Then system (3.1) has an order-1 periodic solution. 

 

If 
*0   , then 

EE MM hh )1()1( *  , phase point EN  sets on the right side of E  (see Fig. 1(b)). The 

successor function 0)(  EN hhEF
E

. Denote the intersection point of h nullcline 0/ dtdh  and the phase set 

N  as point G . There exists a trajectory passing point G and which intersects impulsive set M at the point GM . Then the 

impulsive function maps GM  to point GN , and 0)(  GN hhGF
G

. By the continuous character of successor function,  

system (3.1) has a point Q between E  and G  in phase set such that 0)( GF . It means system (3.1) has an order-1 

periodic solution. 

 

If 10 *   , then 
EE MM hh )1()1( *  , and phase point EN  sets on the left side of E  (see Fig. 1(c)). The 

successor function 0)(  EN hhEF
E

. There exists a trajectory passing point EN  and which intersects impulsive set 

M at the point 
1GM . Then the impulsive function maps 

1GM to point 
1GN , and 0)(

1
1 

EG NN hhGF . Using 

continuous character of successor function, there exists a point 1Q  between E  and EN  in phase set such that 0)( 1 GF . It 

means system (4.1) has an order-1 periodic solution. The proof is completed. 

 

 

         (a)                                                    (b)                                              (c) 
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Fig1.   Order-1 periodic solutions driven by stable manifolds. (a) Case of 
*  . 

(b) Case of 
*0   . (c) Case  of 1*  . Take ，3,2/1,1  ds  

.34.0,5.0,3.0 *
1  p  

 

 

Theorem 3.2  For (3.1),   the  order-1 periodic solution of system (3.1) is unique. 

Choose arbitrary two points VU ,  in the phase set N  and vU hh 0  (see Fig. 2). There exist trajectories UL  and VL  

passing U  and V , and they intersect the impulse set M  at UM  and VM , respectively. UM  is located on the right of 

VM . The impulsive function maps UM  to UN  and VM  to VN , there  
UU MN hh  1  and   

VV MN hh  1 . 

Then,   0)()()(  UNVN hhhhUFVF
UV

, which denotes the successor function is monotonically decreasing 

in the phase set. Thus, there exists only a point H  satisfying 0)( HF .  Hence, system (3.1) has unique an order-1 periodic 

solution. The proof is completed. 

 
Fig2.   Uniqueness of order-1 periodic solutions . 

 

 

Lemma 3.1[4]  If   the  integral along order-1 periodic solution of system(2.2) satisfies  

 

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the integral along order-1 periodic solution of system is stable. 

Theorem 3.3  For (3.1),   system (3.1) has a stable  order-1 periodic solution  if and only if 
2

1
h   . 

Proof. According to the equation (2.2), we have 
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Because the positive and negative of the  above expression  is uncertain, for based on the Dulac theorem, we can choose 
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According to lemma 3.1, system (3.1) has a stable order-1 periodic solution. The proof  is completed.  

 

 

3.2 Periodicity driven by limit cycle 

Let us assume that   system (2.2) has unstable interior  equilibrium ),( **
phE . This  implies that it emerges a limit cycle. In 

this subsection,  through a state pulse control an order-1 periodic solution  driven by  this limit cycle is generated.  
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Theorem 3.4  Suppose  0* P  and  .10*
1  ，hh  ,  Then，for any 10   ,system (3.1) 

has an order-1 periodic solution. 

 

Proof .   For system (3.2), denote the impulsive set 1: hhM   and the phase set 1)1(: hN  . Phase set N  intersects  

limit cycle  at point A  (see Fig. 3(a)). Denote the intersection point of trajectory of limit cycle and set M  as AM . Then the 

impulsive function maps V to AN . There exists a )10( **    satisfying   AM pp
A
*-1  . This makes AN  and 

A  uniform, i.e.,   0AF . Hence, system (3.2) has an order-1 periodic solution. 

 

If 
*  , then    

AA MM pp
*-11   ,  phase point AN  locates on the below of the A , and successor function 

0)(  AN ppAF
A

 (see Fig. 3(b)). There exists a trajectory of intersecting phase set N  at the point B  and which 

closes to the h  axis. Denote the intersection point of trajectory and set M  as BM . Then the impulsive function maps BM  to 

point BN , where point BN  locates on the above side of B . So, the successor function 0)(  BN ppBF
B

. Through 

the continuous character of the successor function, there exist point C  between A  and B  in phase set satisfying 0)( CF . 

It means system 3.2 has an order-1 periodic solution . 

 If 
*  , then    

AA MM pp
*-11   , phase point AN locates on the above side of A , and successor function 

0)(  AN ppAF
A

 (see Fig. 3(c)). There exists a trajectory of intersecting phase set N  at the point 1B  and which 

should away from the h axis. Denote the intersection point of trajectory and set M  as 
1BM . Then the impulsive function 

maps 
1BM to point 

1BN , where point 
1BN  locates on the below side of 1B . So, the successor function 

0)(
11

1  BN ppBF
B

. Through the continuous character of the successor function, there exist a point 1C  between 

A and 1B  in phase set satisfying 0)( 1 CF .  It means system (3.2) has an order-1 periodic solution . The proof  is 

completed.  

 

The unique and stable for system (3.2) can be found in above subsection; we omit the details. 
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           (a)                                              (b)                                               (c) 

 

Fig3.   Order-1 periodic solutions driven by stable manifolds. (a)  Case of 
*  . 

(b) Case of 1*    . (c) Case  of  
*0   . Take .1,2/1,25  ds  

.59.0,75.0,28.0 *
1  h  

 

 

DISCUSS 

      In this paper,  for a predator-prey model with with 

Hapssell-Varley functional  interaction , firstly, we 

investigated the existence and stability of the equilibrium, 

limit cycle, and Hopf bifurcation. Furthermore, multiple 

impulsive controls are discussed such that order-1 periodic 

solution provided by two dynamic behaviors.  Based on  the 

theorem of successor function,  we 

prove the existences of order-1 periodic solution.   Impulsive 

control is an effective scheme, but the control cost   also is 

non-negligible, we will specially calculate cost  in the future 

work. 
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