
 International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-05, Issue-10, October 2018

 21 www.ijerm.com

Abstract— k nearest neighbor join(kNN Join) refers to finding

the k nearest neighbor vectors in another data set R for each

object in the data set S by using the nearest neighbor formula

and the distance calculation formula between vectors in two

data sets.kNN Join has a wide range of applications, so it has

received attention.However, as a combination of k nearest

neighbor join queries and join calculations, processing kNN

joins of high dimensional data is quite time consuming.To

handle larger data sets, the Hadoop and Spark frameworks have

been the tool of choice for parallel and distributed computing in

recent years.In this paper, we present the vertical decomposition

data for processing kNN connections using Spark.We propose to

first approximate the vector piecewise aggregatio and the

symbol aggregation approximation SAX, then decompose the

vector vertically to satisfy the distributed operation, calculate

the distance between different vectors in each partition, and

then merge the partitions to meet the conditions. Calculate the

vector and finally find the true distance between the vectors.The

specific process is described in the implementation section of the

text. The experimental results show that the proposed method

improves the computational speed under the premise of ensuring

the accuracy of the experimental results.

Index Terms—kNN Join, Hadoop, Spark, symbolic

aggregation, vertical partition

I. INTRODUCTION

 kNN Join or its variant operations have been broader
application prospects and application value, including friend
recommendation[1], pattern recognition[2], clustering[3],
image similarity matching[4], outlier detection[5], spatial
database[6] and other related fields. kNN Join is an
asymmetric join operation that returns each of the points in
the relationship R with the k nearest points in the other
relationship S. However, most traditional algorithms use
spatial indexes such as B+ trees[7], R-trees[8] or z-order
curves[9] to improve the performance of kNN connections,
but for high-dimensional data sets of large amounts of data,
these methods can be very time consuming.
For such data-intensive similarity calculations, the
MapReduce framework[10] has become the primary choice
for big data processing. Recently, some scholars have
proposed parallel kNN connection algorithms using
MapReduce, such as H-BNLJ, H-BRJ[11] and PGBJ[12].
Since PGBJ can filter non-similar kNN data in advance,
PGBJ technology is better than H-BNLJ and H-BRJ in
performance. However, as the data set dimension increases
and the amount of data increases, its computational efficiency
is greatly reduced. Nowadays, the similarity calculation of
high-dimensional vectors also has the SAX method[13],
which is very suitable for processing large-scale data sets.

Manuscript received Oct 08, 2018
 Xiaohai Cheng, School of Computer Science & Software Engineering,

Tianjin Polytechnic University, Tianjin, 300387, China

Spark[14] is also a big data processing framework developed
in recent years. It is a reference for MapReduce distributed
big data processing, and it is optimized by the memory
framework to make it have stronger data processing
capabilities. In this paper, we propose an efficient parallel
algorithm based on the Spark platform to improve the parallel
computing efficiency of kNN Join and reduce the running
time. We first need to normalize each dimension vector in the
original R and S data sets to the [0,1] interval, and then
perform horizontal dimensionality reduction through the PAA
representation and SAX, and then partition by the vertical
decomposition technique. The intersection calculation or
distance calculation is performed between the vectors. The
specific calculation method is the histogram intersection and
the Euclidean distance. Finally, the approximate pairs
satisfying the conditions in the distance are filtered out, the
distance between the vectors is recalculated, and k objects of
each vector of the S data set are selected, wherein less than all
of the k vectors are returned.

II. PROBLEM FORMULATION AND RELATED KNOWLEDGE

In this section, we introduce the definition of the basic
variables and formulas in this article. We focus on the core
concepts of this paper -- symbolic aggregation approximation
and vertical decomposition methods.

2.1 Problem formulation

Histogram intersections and Euclidean distances are often
used in image retrieval as similarity measures. When the
histogram intersection is used as a measure of image
similarity, the overlap between the two histograms in each
dimension is added, and if their histogram intersection is large,
the two images are considered to be similar. The calculation
of the Euclidean distance is calculated by calculating the
distance between two vectors, and if their distance in the
feature space is small, the images are considered to be similar.
The kNN join result set of this paper is calculated by these two
methods.
Definition 1 (Histogram intersection) Let H be a set of
normalized image histograms (N-dimensional vector

h,
)1h≤0：H∈h(i

).Given two normalized histograms h
and q, we define the histogram intersection as a measure of the
similarity between them:

）（1),min(|,|
1

N

i

ii qhqh

Using histogram intersections assumes that different
dimensions are irrelevant. This metric has been shown to be
superior to the Euclidean distance, mainly because it reduces
the computation of extraneous vectors in the query results.If
the histograms are very similar, the intersection of the two
histograms is about N, because

Metric KNN Joins Using Spark

Xiaohai Cheng

http://www.ijerm.com/

Metric KNN Joins Using Spark

 22 www.ijerm.com

iiii hqhNi),min(:h1,
and T(h)=N.If the

histograms are significantly different, their intersection will
be small.
Definition 2 (Euclidean distance)Let V be a set of

N-dimensional feature vectors v
)1v≤0：V∈v(i

,The
Euclidean distance between two vectors v and q of dimension
N is defined as follows:

）（2)(),(D
1

2
E

N

i

ii qvqv

Definition 3 (k nearest neighbor) Given an object r, a data set
S and an integer k, find the k nearest neighbor points of S from
K as KNN(r,S), and also find a set of k objects from S

as
),(o SrKNN
，

|,||,|),,(s rsroSrKNNS
。

Definition 4 (kNN Join) Given two data sets R, S and an

integer k, the kNN join of R and S is expressed as SR ，

Each of these objects Rr ，From each nearest neighbor in S

is represented as
)},(KNNsR,|),{(R SrrsrS

。

2.2 Symbol aggregation approximation

2.2.1 PAA representation of high dimensional vectors

PAA[15]is a dimension reduction technique and is widely
used in time series processing and trajectory related research.
It is to divide the original high-dimensional data into equal
dimensions, and calculate the approximate distance of the
original vector by using the distance formula given by the
following definition 5. The vector used in this paper is a
sequence-independent vector, and the order of the dimensions
does not affect the calculation of the Euclidean distance.
When necessary, you can rearrange the dimensional order of
the vectors and then use a piecewise aggregation
approximation to represent the high-dimensional vectors.
Definition 4 (PAA representation) Given an n-dimensional
vector R, divide its dimensions into equal parts, and let N be

the dimension after the division. Nrr ,...,,rR 21
is a

representation of N dimensions, which has a relationship of

Nn rrR ...r 21
 and

ji rr
.Then the vector R has a

PAA expressed as
),...,,(R 21 Nn rrr
，Each dimension vector

is represented as shown below:

）（3r

1)1(

i
N

n

i
N

n
j

ji r
n

N

2.2.2 SAX representation of high dimensional vectors

Definition 5(Symbol aggregation approximation) Given the
N-dimensional vector R after the PAA representation, divide
each dimension into an approximate interval of a symbol
representation. If A1, A2, A3, ..., An are used to approximate

the estimate, it can be expressed as
},...,,{R 21 NSAX AAA

.

Definition 6(Degree of polymerization) Assuming that the
dimension of R is n and the dimension after its PAA

representation is N, the degree of aggregation is defined as

Nn / 。

Given two vectors R and S, the Euclidean distance after their
PAA representation can be defined as:

）（4)(),(
1

2
E

N

i

NiNiP SRSRD

The histogram intersection can be defined as:

）（5),min(),(
1i

H

N

NiNiP SRSRD

It has been shown that the distance represented EPD
by PAA

is the lower limit of the original Euclidean distance ED
.

）（6),(),(PE SRDSRDPE

Similarly, PAA is the upper limit of the histogram intersection.
That is:

）（7),(),(PH SRDSRDPE

Given two vectors R and S and their SAX representation

sR
and sS

，We can define new distances as follows:

）（8)ˆ,ˆ(),(SE
1

2

N

i

NiNi SRdistSR

The definition of the histogram intersection is as follows:

）（9)ˆ,ˆ(min),(SH
1

N

i

NiNi SRSR

)ˆ,ˆ(NiNi SRdist
is a subfunction that calculates the distance

between any two pairs of symbols, where the distance is
obtained by looking up the table. It is easy to prove that the
distance between the SAX representations (SE) is the lower
bound of the distance between the PAA representations

and EPD
 is the lower bound of the Euclidean distance;

according to the transitivity, SE is the lower boundary
approximation of the Euclidean distance:

)10(),(),(SE SRDSR Ess

Similarly, the distance of the histogram intersection
represented by SAX is the upper limit of the distance

represented by PAA, and PHD is the upper bound of the
intersection of histograms. According to transitivity, SH is the
upper bound of the intersection of histograms:

)11(),(),(SH SRDSR Hss

III. IMPLEMENTATION

In this part, we introduce a novel Spark-based kNN Join
method. The main problem we have to solve is the reliability
of the operation results, the running time and the utilization of
computer resources when the amount of data is large. Since
the self-connection and the RS connection are similar, the
specific implementation of this paper only considers the case
where the data set is self-joined.

3.1 SAX aggregation approximation in Spark

At this stage, we have found the maximum and minimum of
all vectors. We need to normalize each dimension of the
vector to the [0,1] interval by the normalization formula, and
use the PAA as defined above according to the SAX degree of
polymerization. Indicates that the formula is
dimension-reduced, and then the vector represented by the
PAA is SAX-represented. If you need to estimate the distance
calculation in the partition, you need to calculate the sum of

http://www.ijerm.com/

 International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-05, Issue-10, October 2018

 23 www.ijerm.com

the sum vector T(h), and finally return the key value pair
<SAX,(T(h), pid)>, pid is the original vector. The number.
The reduce phase consists of a key-value pair returned from
the map, which aggregates keys with the same key-value pair.
The value in the key-value pair will contain multiple vectors.
The original aggregate is Iterable, which we convert to a list.

3.2 Vertical decomposition and intra-partition

calculation in Spark

In this section, the methods for vertically decomposing data
sets and intra-partition calculations are introduced. This
process is mainly for the vertical decomposition of the data
after SAX polymerization in 3.1. For example, suppose the
original vector is N-dimensional, SAX indicates that the back
vector is r-dimension, and the number of partitions needs to
be t, then each vector is equally divided into t parts, and the
dimension in each partition is r/t. The vector is then vertically
decomposed from low to high. Algorithm 1 gives a
pseudo-code representation of the vertical decomposition.
The 2-11th lines of the original SAX key-value pair
decomposition process. The r/t dimension vectors in each
partition are approximated by SAX distance, and the
remaining N-r/t dimension vectors are estimated by
estimation. The sixth line averages the estimated vectors, and
the eighth line divides each SAX vector into vectors. The
ninth line requires a vector representation format to return.
Alogrithm 1 RDD-SAVD-Partition(SAX,newValue,SAID)

SA,SAID：Symbolic aggregate approximation and its id；
newValue:Estimation of N-M dimensional vectors for each
partition
begin
1. pivot_id = 0;
2. for i <— 0 to SAX.length do

3. for j <— 0 to newValue.length do

4. array_add <— getArrayAdd(newValue);

5. end for

6. array_ave <— getArrayAve(array_id);

7. array_add = 0;
8. new_sax <— getNewSax(SAX);

9. result <— (pivot_id,(sax_id,new_sax,array_ave));

10. pivot_id += 1;
11. end for

12. emit(result);
end

The calculation in the partition needs to perform the reduce
aggregation on the vertically decomposed vector, and
aggregate the vectors with the same vd_id into one. Then
calculate the distance between the two in each partition, and
finally output the first k vectors of each vector. Algorithm 2
gives the pseudo code computed within the partition. Each
partition is a list collection. The 1-8 lines calculates the
distance between the vectors in the list through a double for
loop. The third line calculates the histogram intersection
distance of the two vectors, and the fourth behavior stores the
temporary variables. The sixth line extracts the first k
corresponding to the vector.
Alogrithm 2 RDD-SAVD-Aggregation(listValue)
listValue：Aggregation vector for each partition

begin
1. for i <— 0 until listValue.length do

2. for j <— 0 until listValue.length if i!=j do

3. distance <—
histogram_intersection_sax_distance(listValue(i),listValue(j));
4. comp += Tuple2((listValue(i)._1,listValue(j)._1),distance);
5. end for

6. result <— getK(comp);

7. comp.clear();
8. end for

9. emit(result);
end

3.3 Each partition takes the intersection and the final kNN

Join operation

When each partition completes the kNN Join calculation,
each vector of each partition will have a k-to-key-value
approximation data pair. We need to perform intersection
operations on these data pairs, filter out the vector pairs that
satisfy the condition, and then recalculate the distance
between the original vectors by matching the table with the
original vector id in the sax vector pair in the previous cache().
Since the SAX aggregated vector filters out a portion of the
data pair, the pair of data that needs to be calculated will
become less. Algorithm 3 below shows the pseudo code for
this process. The 1-9 lines calculates the distance between the
original vectors. We need to find the original vector set
corresponding to each sax in the symbol aggregation pair
<saxidi, saxidj>, and calculate the original distance and the
set internal vector between the two sets. The distance between
the two. The 2-5 lines calculates a vector pair inside a saxid,
and the 6-9 lines calculates the distance between the vectors
between saxidi and saxidj.
Alogrithm 3
RDD-SAVD-ResultIntersection(sax_ids,sax_map,old_vector)

sax_ids：Take the SAX pair after the intersection,
sax_map: SAX with the original vector id
old_vector: Original vector
begin
1. for tmp_list <— sax_map(sax_ids._1) do

2. for tmp_list1 <— sax_map(sax_ids._1) if tmp_list._2 != tmp_list1._2

do

3. distance <—
histogram_intersection(old_vector(tmp_list._2),old_vector(tmp_list1._2))
;
4. result += Tuple2((tmp_list._2,tmp_list1._2),distance);
5. end for

6. for tmp_list2 <— sax_map(sax_ids._2) do

7. distance <—
histogram_intersection(old_vector(tmp_list._2),old_vector(tmp_list2._2))
;
8. result += Tuple2((tmp_list._2,tmp_list2._2),distance);
9. end for

10. end for

11. emit(result);
end

IV. EXPERIMENTAL CONFIGURATION AND DATA SETS

In order to verify the effectiveness of the proposed method in
the Spark-based kNN Join method. We implement the
algorithm of this paper separately with Spark architecture and
Hadoop architecture, and compare it with the existing
improved Hadoop framework based on the same
experimental conditions. The experimental parameters were
changed, the changes of their performance were observed,
and the experimental results were analyzed to obtain objective
conclusions. Our experiments were done in Hadoop 2.6.4
cluster and Spark 2.1.1 cluster. The cluster has 10 nodes. The
configuration of each node is as follows: core: 4 cores,
memory: 6 GB, disk: 500 GB, operating system: Linux
CentOS release 6.2 (Final). In Spark, one of them is the
Master node and the other 9 are the worker nodes.
The experimental data used primarily in this paper is from the
data set provided in [15] and can be downloaded from
http://corpus-texmex.irisa.fr/. We used some of the data and

http://www.ijerm.com/

Metric KNN Joins Using Spark

 24 www.ijerm.com

modified it, with 128- and 960-dimensional datasets for
downloading data, and 256 and 512-dimensional datasets
generated by 960-dimensional datasets. Due to the needs of
the experiment, we will number each line of the original data
by linux command, which can make the calculation more
efficient.

V. EXPERIMENTS

In the existing distributed high-dimensional similarity
connection model based on MapReduce, we improved its
algorithm into kNN Join algorithm and established a model to
compare with it. We mainly adjust the size of the dimension
(from 128 to 960) and adjust the size of k in the kNN Join in
the experiment (from 10 to 50). These methods will be the key
factors in the following experiments to evaluate the efficiency
of the algorithm.

5.1 Experimental evaluation

In this section, we mainly compare the execution time of our
proposed algorithm. A total of two sets of comparative
experiments were set up, which are the effect of dimensional
change on experimental performance and the effect of
parameter k on experimental performance in kNN Join. The
influence of dimensional change on experimental
performance includes: 1. Comparison of original
improvement method[13] and the method of this paper on
MapReduce platform and Spark platform; 2. Comparison of
Euclidean and histogram methods. In order to facilitate
comparison, in addition to the experimental comparison of
Euclidean and histogram dimensions, we all use the histogram
to find the result of kNN Join. The experiments in this paper
are all tested by self-joining of data sets.

5.2 The effect of dimensional change on experimental

performance

In order to reflect the effect of our proposed method, we
improved the original SAX-based high-dimensional data
similarity connection method, so that it can perform kNN Join
operation, and use it as a reference method to compare
different dimensions with our proposed algorithm.In the
experiment, other parameters were adjusted to a fixed value,
the k value was 10, the SA polymerization degree SA_DP was
8, and the vertical decomposition polymerization degree DP
was 16. Figure 1 is a graph showing the effect of changes in
dimensions on the run time of the three methods.

128 256 384 512 640 768 896

500

1000

1500

2000

 SAX-MR

 SAVD-MR

 SAVD-Spark

Number of dimensions (d)

E
x
c
u

ti
o

n
 t
im

e
 (

s
e

c
)

Figure 1:Effect of dimensionality

Through experiments, it is found that with the increase of the
dimension, the time used by the three methods is increasing,
and the overall trend is consistent. The MapReduce-based
method is more time-consuming than the Spark-based method.

Of course, the original method takes a relatively long time.
The proposed method has different performances on different
platforms. However, the Spark-based SAVD algorithm is
used in different dimensions and has the best experimental
results.
Because our similarity method has two kinds of Euclidean
distance and histogram intersection. We performed a
comparison of different methods on the same platform, but
the histogram intersection has fewer calculation steps and
higher computational efficiency, so it takes less time. Since
the histogram intersection in this paper proposes two methods,
after many experiments, we find that the second method is
better than the first one. So in the following we all use the
most efficient histogram intersection for comparison. Figure 2
is a graph showing the effect of the change in dimension on
the Euclidean and histogram intersection run time.

128 256 384 512 640 768 896

600

900

1200

1500

1800 HSAVD-Spark

 ESAVD-Spark

Number of dimensions (d)

E
x
c
u

ti
o

n
 t
im

e
 (

s
e

c
)

Figure 2:Effect of dimensionality

From the trend graph drawn from the experimental data, we
can find that as the dimension increases, the time spent on
kNN Join is gradually increasing, but the calculation of the
Euclidean distance does not take more time for the method of
calculating the histogram intersection.

CONCLUSION

The kNN Join of high-dimensional data is computationally
intensive, especially when the amount of data is very large, we
need to find a simple way to reduce the amount of
computation. In this paper, we tested the method with
different data sets. A lot of experimental research shows that
our method is more efficient, and Spark-based kNN Join is the
shortest time. Our method has a good effect on improving
kNN Join of high dimensional vectors.

REFERENCES

[1] Xianke Zhou,Sai Wu,Gang Chen,Lidan Shou.KNN processing with
co-space distance in SoLoMo systems.Expert
Syst.Appl.2014,41(16):6967-6982.

[2] M. Muja, D. G. Lowe, "Scalable nearest neighbor algorithms for high
dimensional data", Pattern Analysis and Machine Intelligence IEEE
Transactions, vol. 36, no. 11, pp. 2227-2240, 2014.

[3] C. Böhm, F. Krebs, "Supporting KDD applications by the k-nearest
neighbor join", DEXA, 2003.

[4] Giuseppe Amato,Fabrizio Falchi,Local Feature based Image
Similarity Functions for kNN Classification.ICAART (1)
2011:157-166

[5] S. Ramaswamy, R. Rastogi, K. Shim, Efficient algorithms for mining
outliers from large data sets. SIGMOD Rec, vol. 29, no. 2, pp.
427-438, 2000.

[6] G. R. Hjaltason, H. Samet, "Distance browsing in spatial databases",
ACM Transactions on Database Systems (TODS), vol. 24, no. 2, pp.
265-318, 1999.

[7] D. Comer, "Ubiquitous b-tree", ACM Comput. Surv, vol. 11, no. 2, pp.
121-137, 1979.

http://www.ijerm.com/
https://dblp.org/pers/hd/a/Amato:Giuseppe
https://dblp.org/pers/hd/f/Falchi:Fabrizio
https://dblp.org/db/conf/icaart/icaart2011-1.html#AmatoF11
https://dblp.org/db/conf/icaart/icaart2011-1.html#AmatoF11

 International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-05, Issue-10, October 2018

 25 www.ijerm.com

[8] A. Guttman, "R-trees: A dynamic index structure for spatial
searching", SIGMOD Rec, vol. 14, no. 2, pp. 47-57, 1984.

[9] G. M. Morton, "A computer oriented geodetic data base; and a new
technique in file sequencing", Technical Report 1966.

[10] Jeffrey Dean,Sanjay Ghemawat.Mapreduce: Simplified data
processing on large clusters[J].Commun. ACM,2008,51(1):107-113.

[11] Chi Zhang,Feifei Li,Jeffrey Jestes.Efficient parallel knn joins for large
data in mapreduce[C]//EDBT 2012:38-49

[12] Wei Lu,Yanyan Shen,Su Chen,et al.Efficient Processing of K nearest
neighbor joins using MapReduce[J]. PVLDB,2012,5(10):1016-1027.

[13] Youzhong Ma,Xiaofeng Meng, Shaoya Wang.Parallel similarity joins
on massive high-dimensional data using MapReduce[J].John Wiley
and Sons Ltd, 2016,28(1):166-183.

[14] Apache, “Apache hadoop,” https://spark.apache.org
[15] Luo W, Tan H, Mao H, Ni LM. Efficient similarity joins on massive

high-dimensional datasets using mapreduce[C]//IEEE Computer
Society :Washington, DC,US,2012:1-10.

http://www.ijerm.com/
https://dblp.org/pers/hd/d/Dean:Jeffrey
https://dblp.org/pers/hd/g/Ghemawat:Sanjay
https://dblp.org/db/journals/cacm/cacm51.html#DeanG08
https://dblp.org/pers/hd/z/Zhang:Chi
https://dblp.org/pers/hd/l/Li_0001:Feifei
https://dblp.org/pers/hd/j/Jestes:Jeffrey
https://dblp.org/pers/hd/l/Lu:Wei
https://dblp.org/pers/hd/s/Shen:Yanyan
https://dblp.org/pers/hd/c/Chen:Su
https://hadoop.apache.org/

	I. INTRODUCTION
	II. Problem formulation and related knowledge
	2.1 Problem formulation
	2.2 Symbol aggregation approximation
	2.2.1 PAA representation of high dimensional vectors
	2.2.2 SAX representation of high dimensional vectors

	III. Implementation
	3.1 SAX aggregation approximation in Spark
	3.2 Vertical decomposition and intra-partition calculation in Spark
	3.3 Each partition takes the intersection and the final kNN Join operation

	When each partition completes the kNN Join calculation, each vector of each partition will have a k-to-key-value approximation data pair. We need to perform intersection operations on these data pairs, filter out the vector pairs that satisfy the cond...
	IV. Experimental configuration and data sets
	V. Experiments
	5.1 Experimental evaluation
	5.2 The effect of dimensional change on experimental performance

	Conclusion
	REFERENCES

