
                                                    International Journal of Engineering Research And Management (IJERM) 

ISSN: 2349- 2058, Volume-05, Issue-10, October 2018 
 

                                                                                              51                                                                                    www.ijerm.com  

 

 

 
Abstract—In this paper, we provide a state feedback control 

strategy for  synchronization of coronary artery system(CAS). 

In order to obtain less conservative results, we design a state 

feedback controller to achieve synchronization based on the 

Jensen integral inequality by constructing Lyapunov-Krasovskii 

functional (LKF). Finally, the simulation results are illustrated 

to demonstrate the validity of the proposed state feedback 

control method. 

 
Index Terms—Coronary artery system,Jensen inequality, 

Synchronization control. 

 

I. INTRODUCTION 

 The synchronization of the chaotic systems has been 

flourished as an appealing research area owing to its potential 

applications in the image encryption, communication security, 

biomedical engineering, chemical reaction, brain disorder and 

so on [1-6]. The chief purpose of chaos synchronization is to 

realize the identical behavior between the drive and response 

systems by means of the feedback control. In the past few 

years, the synchronization of chaotic systems under 

uncertainty, noise, disturbance[7-8], has been investigated by 

different nonlinear control schemes [9], such as fuzzy 

control[10], sliding mode control[11] and impulse control 

[12], etc. Applying chaos theory to biology and biomedicine 

greatly promotes the research in the field of biomedicine, such 

as cardiovascular diseases, nervous system, pathological 

phenomena and so on. Medical experts believe that the 

coronary artery vasospasm is an inducement of some diseases 

related to myocardial ischemia, such as the angina pectoris, 

myocardial infarction, sudden death syndrome. Once the 

coronary artery vessels enter the chaotic state[13], the 

coronary artery vasospasm will be caused. Therefore, 

understanding the nonlinear characteristic of coronary 

vasospasm, suppressing the emergence of chaos phenomenon, 

achieving the synchronization of the healthy and diseased 

CAS are of great theoretical significance and practical 

potentiality for realizing the treatment of vessel-related 

diseases. 

A sliding mode control scheme is investigated for 

synchronization of CACS in the literature [14], which can 

stabilize the synchronization error system in finite time.In the 

work [15], the differential transformation approach is utilized 

to handle the governing equations of CACS, and the presented 

state feedback control scheme can make coronary artery 

system synchronize to any state. Considering that the bound 

of perturbation is unknown, the literature [16] designs a 
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high-order sliding mode adaptive controller for 

synchronization of CAS, which can effectively alleviate the 

chattering influence. Taking the external disturbance and 

input time-varying delay into account, the work[17] presents 

the state feedback control scheme for CAS synchronization. 

Based on the work [17], the literature [18] achieves the 

synchronization of CAS by delay-partitioning approach, 

which can effectively reduce the conservation.  

Motivated by the above discussions, the paper addresses the 

controller design for synchronization of CAS with 

disturbances or perturbations. To the best of my knowledge, 

fewer literatures involve the issue mentioned above. Via the 

Jensen inequality, we design a state feedback controller for 

synchronization of coronary artery system by application of 

Lyapunov-Krasovskii functional. The simulation results 

demonstrate that the CAS in the state of vasospasm can 

synchronize to the normal CAS by the proposed scheme in 

finite time, which provides certain theoretical basis for the 

treatment of coronary vascular diseases. 

 

II. PROBLEM FORMULATION AND RELATED KNOWLEDGE 

The mathematical model of the coronary artery system is 

described as follows: 

 

 

 
 

where the inner diameter change, inner pressure change and 

periodical perturbation of the coronary artery vessel are 

represented by ,  and  respectively. Once the 

coronary artery vessel occurs the pathological change, the 

parameter  will follow change. When =-0.5, the coronary 

artery system will occur the chaotic behavior with E=0.3, 

=1, b=0.15, c=-1.7. 

Considering two chaotic system, the nonlinear master and 

slave time-delay system can be written as follows: 

 

 

 
 

According to master and salve system, synchronization error 

is defined . By defining the controller u=Ke, 

we can describe the error system as follows: 

 

 
 

Lemma (Jensen inequality) Suppose that R>0 is symmetric 

matrix, x is a continuously  differentiable function 

, we can obtain: 
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Where 

 

 

III. SYNCHRONIZATION CONTROL 

Theorem. Consider the error system obtained by drive and 

response systems, the error e asymptotically converge to zero 

if there exist positive-definite symmetric matrices , 

, , the appropriate dimensions matrices 

 , s=1,2,3, v=1,2, and the scalars , ,  such that 

LMIs: 

 

<0  

                                                                       

Where 

 

 

 

 

 

 

 

 
 

IV. SIMULATION  

To exhibit the validity of the presented synchronization 

control strategy, the simulation results of CAS are given as 

follows. The parameters of system master and slave are 

considered: 

 

 

 

 

(1)Suppose , , the controller 

gain matrix K1 is computed from Theorem as: 

 

 
 

By employing the controller, the healthy and diseased CAS 

are synchronized as depicted by Figure1. 

 
Figure1: The error system with K1 

 

(2)Suppose , , the 

controller gain matrix K2 is computed from Theorem as: 

 

 
 

As we can see from Figure 2, the error system converges to 

zero in finite time, which indicates that the diseased and 

healthy CAS can produce the identical behaviors with the 

control under disturbances, and also shows that the 

synchronization controller has the desirable robust 

performance. 

 
Figure2: The error system with K2 

 

(3)Suppose  , , the 

controller gain matrix K3 is computed from Theorem as: 
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Figure3: The error system with K3 

Figure3 shows the synchronous behavior withthe control 

input.By using the different figures,Figure3 also shows the 

trajectory of the error system. 

 

V. CONCLUSION 

The paper addresses the synchronization for the healthy and 
diseased CAS subjected to the time-delays under disturbances 
and perturbations. The time-delays can be handled by 
employing the delay-rangedependent strategy for LKF. Based 
on the Jensen inequality, the synchronization of CACS is 
achieved, which ensures the regional stability of the error 
system. 
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