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Abstract— The core of automatic programming is to solve 

the problem of program synthesis.At present, the neural 

network is used to solve the problem of program 

synthesis.Neural program interpreters are based on input 

and output of training, testing.Learn the rules of the task 

from the input/output pairs.However, the traditional 

neural interpreter may not converge during training. In 

this paper, different convergence algorithms are used to 

train the neural interpreter in order to find the best 

convergence algorithm. 

 

         Index Terms—Automatic Programming; Neural 

Programmer-Interpreters; Artificial intelligence 

I. INTRODUCTION 

The core issue of automatic programming is program 

synthesis. NPI (Neural Programmer - Interpreter) does not 

generate code snippets, but learns transformation rules from 

input and output pairs, and then NPI can implement tasks 

through these transformation rules.The task of program 

synthesis is to find the programs needed to satisfy some form 

of constraint (user intent). Unlike traditional compilers, which 

translate high-level code into low-level code for machines 

through semantic translation. Program synthesis usually 

searches for programs to accommodate constraints in 

program space. The most common constraints are input and 

output pairs. 

II. RELATED WORK 

Gulwani
[2]

 describes an algorithm based on several new 

concepts that synthesizes the programs needed in the 

language from input and output examples. The goal of Matej 

Balog
[3]

 is to train a neural network to predict the 

characteristics of programs that produce output from input. 

On the contrary, Ian j. Goodfellow
[4] 

thinks that the main 

reason for the neural network's vulnerability to hostile 

disturbances is its linear nature. Eric Price
[5]

 has learned to 

perform all arithmetic operations (and generalize to Numbers 

of any length). Marcin Andrychowicz
[6]

 notes that 

ham-enhanced LSTM networks can learn algorithms for 

problems such as merging, sorting, or binary search from pure 

input and output examples. Łukasz Kaiser
[7] 

proposes neural 

GPU is put forward.It is based on a convolutional gate 

controlled loop unit, which, like NTM, is computationally 

generic. The neural machine translation proposed by Dzmitry 

Bahdanau
[8]

 usually belongs to the encoder decoder family, 

and the source sentence is encoded as a vector of fixed length, 

from which the decoder generates the translation. Arvind 

Neelakantan
[9]

 came up with a neural programmer, a neural 

 
Manuscript received Oct 14, 2018 

Quan Wang, School of Computer Science & Software Engineering, 

Tianjin Polytechnic University, Tianjin, 300387, China 

network that adds a set of basic arithmetic and logic 

operations that can be trained end-to-end through reverse 

propagation. By coupling neural networks to external 

memory resources, Alex Graves
[10]

 extends the functions of 

neural networks that can interact through attention processes. 

Oriol Vinyals
[11]

 introduced a new neural architecture to learn 

conditional probabilities of output sequences, where elements 

are discrete markers corresponding to positions in the input 

sequence. Kevin Ellis
[12]

 proposes an algorithm that USES 

symbol solvers to effectively sample programs. Gunter
[13]

 

proposed a TERPRET model.It consists of a specification that 

the program represents and an interpreter that describes how 

the program maps input to output. Chen xinyun
[14]

 has taken 

an important step in this direction. He proposed a new 

challenge in the field of program synthesis from the input and 

output examples: learning context-free parsers from paired 

input programs and their parse trees. 

III. CONVERGENCE ALGORITHM 

SGD carries out gradient update for each sample every time it 

updates. For large data sets, there may be similar samples. 

SGD only updates once at a time, so there is no redundancy, 

and it is faster, and new samples can be added.Random 

gradient descent is updated by iterating through each sample. 

If the sample size is large, it is possible to use only part of the 

sample. SGD, because it updates frequently, will cause severe 

oscillations in cost function.This algorithm can make larger 

updates to low-frequency parameters and smaller updates to 

high-frequency ones. Therefore, it performs well for sparse 

data and improves the robustness of SGD. 
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Where g is the gradient of parameter given at time t 

If it is a normal SGD, then the gradient update formula for 

groundless _i at every moment is: 

 .g , iit J   

However, the learning rate literal here also changes with t and 

I: 
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Where G_t is a diagonal matrix, the (I, I) element is the sum of 

the gradient squared of the parameter I at time t. 

The advantage of Adagrad is to reduce the manual adjustment 

of learning rate 

Setting value of super parameter: 0.01 is selected for general 

index 

The downside is that the denominator accumulates, so the 

learning rate shrinks and eventually becomes very small. 

This algorithm is an improvement on Adagrad, 
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Compared to Adagrad, the G in the denominator is replaced 

by the decaying average of the past gradient squared, the 

exponential decaying average 
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This denominator is equivalent to the root mean squared 

(RMS) of the gradient. In the statistical analysis, the square 

root of all values is summed, the mean value is obtained, and 

the square root is obtained. 
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Where E is calculated as follows, t time depends on the 

average of the previous time and the current gradient: 

Gradient update rules: 
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In addition, there will be more changed eta for the RMS [Δ 
theta], in this way, we don't even need vector set in advance: 
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normally set to 0.9 

 

Disadvantages of Adams algorithm 

First, the Adams algorithm may not converge. The stochastic 

gradient descent method does not use the second-order 

momentum, so the learning rate is constant. In the actual 

process, the attenuation strategy of the learning rate is 

generally adopted to make the learning rate decrease 

continuously.The Adams algorithm is not like this. Second 

order momentum is the accumulation in the fixed time 

window. With the change of time window, the data 

encountered may change dramatically, making it possible to 

be large or small instead of monotonic changes.This may 

cause a learning rate shock at the later stage of training, 

resulting in the failure of the model to converge. 

Secondly, Adams algorithm may miss the global optimal 

solution. The same optimization problem, different 

optimization algorithms may find different answers, but 

adaptive learning rate algorithms often find very poor 

answers.They demonstrate through a specific data example 

that the adaptive learning rate algorithm may overfit the 

features that appear in the early stage, while the features that 

appear in the later stage are difficult to correct the previous 

fitting effect. 

 

The traditional neural program interpreter adopts Adam 

algorithm to accelerate convergence. The Adams algorithm is 

the combination of the modified Momentum and the 

RMSProp algorithm. In the Adams algorithm, the Momentum 

is directly incorporated into the first order moment estimation 

of gradient, that is, the exponential weighting.Because 

Adam's algorithm may not converge and may miss the global 

optimal solution, in order to improve the performance of the 

neural programming interpreter, a new convergence 

algorithm is adopted to solve these problems 
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Figure 2  AMSGrad algorithm 

 

IV. EXPERIMENTS 

      
Figure 3 Addition model based on NPI 

 

As shown in Figure 3, the arrows added to the numbers 934 

and 348. The grid represents the pointer, which can be moved 

on the same line, LEFT (LEFT), RIGHT (RIGHT), ADD 

(ADD ), ACT (simplified), CARRY (CARRY), WRITE 

(WRITE), etc. On the left side of the figure, for example, in 

the grid, the first subroutine ADD will be executed, after the 

MPL and MGU are composed, the core network function 

status of the current time node, Input three decoders as 

parameters respectively, the decoder generates embedded 

function keys, find the corresponding values in the space 

program, that is, need to execute the time node under the 

subroutine, here is ACT; the probability of the decoder 

generating the termination program, the probability is less 

than 0.5 . The decoder will update the function parameters of 

the next time node. Subsequent operations are similar to the 

operations in the first grid.  

In the NPI addition model, this article uses an experimental 

environment consistent with Scott Reed, which uses two 

layers of LSTM, each containing 256 hidden units. For NPI 

training, adaptive moment estimation (AMSGrad) is 

employed. In practice, The NPI training has a learning rate of 

0.0001 and a batch size of 1. 

The task in the NPI add model is to read the numbers in two 

10-digit numbers and generate the number of answers. The 

goal is to learn to apply addition and carry operations from 

right to left in this algorithm. 
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Figure 4 average loss:Adam vs AMSGrad 

 

As shown in Figure 4, The neural programming interpreter 

does not use the AMSGrad algorithm, its average loss is 0.007 

for training. However, the neural programming interpreters 

with AMSGrad algorithm reduces training time to 0.005. 

CONCLUSION 

Traditional neural programmer interpreters uses Adam 

algorithm to accelerate convergence, but Adam algorithm 

may not be of convergence and may miss the shortcomings of 

the global optimal solution to avoid these problems, we 

introduce a new AMSGrad algorithm, AMSGrad algorithm 

was applied to the neural programmer interpreters addition 

model, the average loss is reduced compared to the traditional 

neural programmer interpreters. 
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