
 International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-05, Issue-10, October 2018

 61 www.ijerm.com

Abstract— The core of automatic programming is to solve

the problem of program synthesis.At present, the neural

network is used to solve the problem of program

synthesis.Neural program interpreters are based on input

and output of training, testing.Learn the rules of the task

from the input/output pairs.However, the traditional

neural interpreter may not converge during training. In

this paper, different convergence algorithms are used to

train the neural interpreter in order to find the best

convergence algorithm.

 Index Terms—Automatic Programming; Neural

Programmer-Interpreters; Artificial intelligence

I. INTRODUCTION

The core issue of automatic programming is program

synthesis. NPI (Neural Programmer - Interpreter) does not

generate code snippets, but learns transformation rules from

input and output pairs, and then NPI can implement tasks

through these transformation rules.The task of program

synthesis is to find the programs needed to satisfy some form

of constraint (user intent). Unlike traditional compilers, which

translate high-level code into low-level code for machines

through semantic translation. Program synthesis usually

searches for programs to accommodate constraints in

program space. The most common constraints are input and

output pairs.

II. RELATED WORK

Gulwani
[2]

 describes an algorithm based on several new

concepts that synthesizes the programs needed in the

language from input and output examples. The goal of Matej

Balog
[3]

 is to train a neural network to predict the

characteristics of programs that produce output from input.

On the contrary, Ian j. Goodfellow
[4]

thinks that the main

reason for the neural network's vulnerability to hostile

disturbances is its linear nature. Eric Price
[5]

 has learned to

perform all arithmetic operations (and generalize to Numbers

of any length). Marcin Andrychowicz
[6]

 notes that

ham-enhanced LSTM networks can learn algorithms for

problems such as merging, sorting, or binary search from pure

input and output examples. Łukasz Kaiser
[7]

proposes neural

GPU is put forward.It is based on a convolutional gate

controlled loop unit, which, like NTM, is computationally

generic. The neural machine translation proposed by Dzmitry

Bahdanau
[8]

 usually belongs to the encoder decoder family,

and the source sentence is encoded as a vector of fixed length,

from which the decoder generates the translation. Arvind

Neelakantan
[9]

 came up with a neural programmer, a neural

Manuscript received Oct 14, 2018

Quan Wang, School of Computer Science & Software Engineering,

Tianjin Polytechnic University, Tianjin, 300387, China

network that adds a set of basic arithmetic and logic

operations that can be trained end-to-end through reverse

propagation. By coupling neural networks to external

memory resources, Alex Graves
[10]

 extends the functions of

neural networks that can interact through attention processes.

Oriol Vinyals
[11]

 introduced a new neural architecture to learn

conditional probabilities of output sequences, where elements

are discrete markers corresponding to positions in the input

sequence. Kevin Ellis
[12]

 proposes an algorithm that USES

symbol solvers to effectively sample programs. Gunter
[13]

proposed a TERPRET model.It consists of a specification that

the program represents and an interpreter that describes how

the program maps input to output. Chen xinyun
[14]

 has taken

an important step in this direction. He proposed a new

challenge in the field of program synthesis from the input and

output examples: learning context-free parsers from paired

input programs and their parse trees.

III. CONVERGENCE ALGORITHM

SGD carries out gradient update for each sample every time it

updates. For large data sets, there may be similar samples.

SGD only updates once at a time, so there is no redundancy,

and it is faster, and new samples can be added.Random

gradient descent is updated by iterating through each sample.

If the sample size is large, it is possible to use only part of the

sample. SGD, because it updates frequently, will cause severe

oscillations in cost function.This algorithm can make larger

updates to low-frequency parameters and smaller updates to

high-frequency ones. Therefore, it performs well for sparse

data and improves the robustness of SGD.
 .;;- ii

yxJ

Gradient update rules:

.,

,

,,1t it

iit

iti
g

G

Where g is the gradient of parameter given at time t

If it is a normal SGD, then the gradient update formula for

groundless _i at every moment is:

 .g , iit J

However, the learning rate literal here also changes with t and

I:

.,,,1t ititi
g

Where G_t is a diagonal matrix, the (I, I) element is the sum of

the gradient squared of the parameter I at time t.

The advantage of Adagrad is to reduce the manual adjustment

of learning rate

Setting value of super parameter: 0.01 is selected for general

index

The downside is that the denominator accumulates, so the

learning rate shrinks and eventually becomes very small.

This algorithm is an improvement on Adagrad,

Convergence Algorithm on NPI

Quan Wang

http://www.ijerm.com/

Convergence Algorithm on NPI

 62 www.ijerm.com

Compared to Adagrad, the G in the denominator is replaced

by the decaying average of the past gradient squared, the

exponential decaying average

it

it

itit g
G

,

,

,,1

This denominator is equivalent to the root mean squared

(RMS) of the gradient. In the statistical analysis, the square

root of all values is summed, the mean value is obtained, and

the square root is obtained.

 t

t

g
gRMS

][

-

Where E is calculated as follows, t time depends on the

average of the previous time and the current gradient:

Gradient update rules:
2

1

22)1(][][ttt ggEgE

In addition, there will be more changed eta for the RMS [Δ
theta], in this way, we don't even need vector set in advance:

t

t

t g
gRMS

RMS

][

][1

ttt 1

normally set to 0.9

Disadvantages of Adams algorithm

First, the Adams algorithm may not converge. The stochastic

gradient descent method does not use the second-order

momentum, so the learning rate is constant. In the actual

process, the attenuation strategy of the learning rate is

generally adopted to make the learning rate decrease

continuously.The Adams algorithm is not like this. Second

order momentum is the accumulation in the fixed time

window. With the change of time window, the data

encountered may change dramatically, making it possible to

be large or small instead of monotonic changes.This may

cause a learning rate shock at the later stage of training,

resulting in the failure of the model to converge.

Secondly, Adams algorithm may miss the global optimal

solution. The same optimization problem, different

optimization algorithms may find different answers, but

adaptive learning rate algorithms often find very poor

answers.They demonstrate through a specific data example

that the adaptive learning rate algorithm may overfit the

features that appear in the early stage, while the features that

appear in the later stage are difficult to correct the previous

fitting effect.

The traditional neural program interpreter adopts Adam

algorithm to accelerate convergence. The Adams algorithm is

the combination of the modified Momentum and the

RMSProp algorithm. In the Adams algorithm, the Momentum

is directly incorporated into the first order moment estimation

of gradient, that is, the exponential weighting.Because

Adam's algorithm may not converge and may miss the global

optimal solution, in order to improve the performance of the

neural programming interpreter, a new convergence

algorithm is adopted to solve these problems

AMSGrad

Input： Fx 1
,step size 21

T

1tt ,}{,}{ T

tt

Set 00,0 000

vvm ，

For t=1 to T do

tvF ttttt

ttt

tttt

ttttt

ttt

vmaxx

vvv

gvv

gmm

xfg

,1

1

2

12

111

)/(

),max(

)1(

~)1(

)(

End for

Figure 2 AMSGrad algorithm

IV. EXPERIMENTS

Figure 3 Addition model based on NPI

As shown in Figure 3, the arrows added to the numbers 934

and 348. The grid represents the pointer, which can be moved

on the same line, LEFT (LEFT), RIGHT (RIGHT), ADD

(ADD), ACT (simplified), CARRY (CARRY), WRITE

(WRITE), etc. On the left side of the figure, for example, in

the grid, the first subroutine ADD will be executed, after the

MPL and MGU are composed, the core network function

status of the current time node, Input three decoders as

parameters respectively, the decoder generates embedded

function keys, find the corresponding values in the space

program, that is, need to execute the time node under the

subroutine, here is ACT; the probability of the decoder

generating the termination program, the probability is less

than 0.5 . The decoder will update the function parameters of

the next time node. Subsequent operations are similar to the

operations in the first grid.

In the NPI addition model, this article uses an experimental

environment consistent with Scott Reed, which uses two

layers of LSTM, each containing 256 hidden units. For NPI

training, adaptive moment estimation (AMSGrad) is

employed. In practice, The NPI training has a learning rate of

0.0001 and a batch size of 1.

The task in the NPI add model is to read the numbers in two

10-digit numbers and generate the number of answers. The

goal is to learn to apply addition and carry operations from

right to left in this algorithm.

http://www.ijerm.com/

 International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-05, Issue-10, October 2018

 63 www.ijerm.com

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

平均损失

Adam VS AMSGrad

Adam AMSGrad

Figure 4 average loss:Adam vs AMSGrad

As shown in Figure 4, The neural programming interpreter

does not use the AMSGrad algorithm, its average loss is 0.007

for training. However, the neural programming interpreters

with AMSGrad algorithm reduces training time to 0.005.

CONCLUSION

Traditional neural programmer interpreters uses Adam

algorithm to accelerate convergence, but Adam algorithm

may not be of convergence and may miss the shortcomings of

the global optimal solution to avoid these problems, we

introduce a new AMSGrad algorithm, AMSGrad algorithm

was applied to the neural programmer interpreters addition

model, the average loss is reduced compared to the traditional

neural programmer interpreters.

REFERENCES

[1] Scott Reed, Nando de Freitas ， Neural

Programmer-Interpreters[J] ， arXiv preprint

arXiv:1511.06279,2016.

[2] Sumit Gulwani ,Automating String Processing in

Spreadsheets Using Input-Output Examples

[J],Proceedings of the 38th annual ACM

SIGPLAN-SIGACT symposium on Principles of

programming languages,317-330,2011.

[3] Matej Balog, Alexander L. Gaunt, Marc

Brockschmidt, Sebastian Nowozin, Daniel Tarlow,

DeepCoder: Learning to Write

Programs[J],arXiv:1611.01989, 2016.

[4] IJ Goodfellow, J Shlens, C

Szegedy, Explaining and harnessing adversarial

examples[J].arXiv preprint arXiv:1607.02533, 2016.

[5] E Price, W Zaremba, I Sutskever, Extensions and

Limitations of the Neural GPU[J].arXiv preprint

arXiv:1611.00736, 2016.

[6] M Andrychowicz, K Kurach, Learning efficient algorithms

with hierarchical attentive memory[J]. arXiv preprint

arXiv:1602.03218, 2016.

[7] Ł Kaiser, I Sutskever,Neural gpus learn algorithms[J].

arXiv preprint arXiv:1511.08228, 2015.

[8] D Bahdanau, K Cho, Y Bengio,Neural machine translation

by jointly learning to align and translate [J].arXiv preprint

arXiv:1409.0473, 2014.

[9] A Neelakantan, QV Le, I Sutskever, Neural programmer:

Inducing latent programs with gradient descent[J]. arXiv

preprint arXiv:1511.04834, 2015.

[10] A Graves ， G Wayne , I Danihelka, Neural Turing

Machines[J]. Computer Science , 2014.

[11] Vinyals, M Fortunato, N Jaitly, Pointer networks[J].

NIPS, 2015 .

[12] K Ellis, A Solar-Lezama, J Tenenbaum,Sampling for

Bayesian program learning[J].NIPS, 2016.

[13] Alexander L. Gaunt, Marc Brockschmidt, Rishabh

Singh, Nate Kushman, Pushmeet Kohli, Jonathan

Taylor, Daniel Tarlow,TerpreT: A Probabilistic

Programming Language for Program Induction[J].

arXiv:1608.04428, 2016.

[14] X Chen ， C Liu ， D Song, Towards Synthesizing

Complex Programs from Input-Output

Examples[J].ICLR,2018.

http://www.ijerm.com/
https://arxiv.org/find/cs/1/au:+Reed_S/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Freitas_N/0/1/0/all/0/1
https://arxiv.org/search/cs?searchtype=author&query=Balog,+M
https://arxiv.org/search/cs?searchtype=author&query=Gaunt,+A+L
https://arxiv.org/search/cs?searchtype=author&query=Brockschmidt,+M
https://arxiv.org/search/cs?searchtype=author&query=Brockschmidt,+M
https://arxiv.org/search/cs?searchtype=author&query=Nowozin,+S
https://arxiv.org/search/cs?searchtype=author&query=Tarlow,+D
https://b.glgoo.top/citations?user=UE6z_m8AAAAJ&hl=zh-CN&oi=sra
https://b.glgoo.top/citations?user=XCZpOcAAAAAJ&hl=zh-CN&oi=sra
https://b.glgoo.top/citations?user=x04W_mMAAAAJ&hl=zh-CN&oi=sra
https://arxiv.org/abs/1611.00736
https://arxiv.org/abs/1611.00736
https://b.glgoo.top/citations?user=n9K1v-cAAAAJ&hl=zh-CN&oi=sra
https://b.glgoo.top/citations?user=JWmiQR0AAAAJ&hl=zh-CN&oi=sra
https://b.glgoo.top/citations?user=x04W_mMAAAAJ&hl=zh-CN&oi=sra
https://arxiv.org/abs/1511.08228
https://b.glgoo.top/citations?user=Nq0dVMcAAAAJ&hl=zh-CN&oi=sra
https://b.glgoo.top/citations?user=0RAmmIAAAAAJ&hl=zh-CN&oi=sra
https://b.glgoo.top/citations?user=kukA0LcAAAAJ&hl=zh-CN&oi=sra
https://a.glgoo.top/citations?user=ygTCc6cAAAAJ&hl=zh-CN&oi=sra
https://a.glgoo.top/citations?user=vfT6-XIAAAAJ&hl=zh-CN&oi=sra
https://a.glgoo.top/citations?user=x04W_mMAAAAJ&hl=zh-CN&oi=sra
http://xueshu.baidu.com/s?wd=author:(Graves,%20Alex)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
http://xueshu.baidu.com/s?wd=author:(Wayne,%20Greg)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
http://xueshu.baidu.com/s?wd=author:(Danihelka,%20Ivo)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
http://cn.arxiv.org/abs/1410.5401
http://cn.arxiv.org/abs/1410.5401
http://xueshu.baidu.com/usercenter/data/journal?cmd=jump&wd=journaluri:(1f0d55a7606b5f37)%20%E3%80%8AComputer%20Science%E3%80%8B&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=publish&sort=sc_cited
https://x.glgoo.top/citations?user=NkzyCvUAAAAJ&hl=zh-CN&oi=sra
https://x.glgoo.top/citations?user=PnO85xgAAAAJ&hl=zh-CN&oi=sra
https://x.glgoo.top/citations?user=kjMNMLkAAAAJ&hl=zh-CN&oi=sra
https://b.glgoo.top/citations?user=8BX3BokAAAAJ&hl=zh-CN&oi=sra
https://b.glgoo.top/citations?user=rRJ9wTJMUB8C&hl=zh-CN&oi=sra
http://papers.nips.cc/paper/6082-sampling-for-bayesian-program-learning
http://papers.nips.cc/paper/6082-sampling-for-bayesian-program-learning
https://arxiv.org/search/cs?searchtype=author&query=Gaunt,+A+L
https://arxiv.org/search/cs?searchtype=author&query=Brockschmidt,+M
https://arxiv.org/search/cs?searchtype=author&query=Singh,+R
https://arxiv.org/search/cs?searchtype=author&query=Singh,+R
https://arxiv.org/search/cs?searchtype=author&query=Kushman,+N
https://arxiv.org/search/cs?searchtype=author&query=Kohli,+P
https://arxiv.org/search/cs?searchtype=author&query=Taylor,+J
https://arxiv.org/search/cs?searchtype=author&query=Taylor,+J
https://arxiv.org/search/cs?searchtype=author&query=Tarlow,+D
http://xueshu.baidu.com/s?wd=author:(Xinyun%20Chen)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
http://xueshu.baidu.com/s?wd=author:(Chang%20Liu)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
http://xueshu.baidu.com/s?wd=author:(Dawn%20Song)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
http://cn.arxiv.org/abs/1706.01284
http://cn.arxiv.org/abs/1706.01284
http://cn.arxiv.org/abs/1706.01284

	I. INTRODUCTION
	II. RELATED WORK
	III. Convergence algorithm
	IV. EXPERIMENTS
	Conclusion
	REFERENCES

