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Abstract— Using pseudo-random number generators as a 

source of random numbers does present some problems, such as 

not having the population of the pseudo-random numbers 

obtained behave like a uniform distribution or even by having 

some specific pattern in the pseudo-random number generation 

process. It is very important to make sure the pseudo-random 

numbers behave properly when the results of simulations based 

on pseudo-random number generators are used if conclusions 

leading to scientific discoveries are to be considered valid. 

Instead of generating pseudo-random numbers, a method based 

on extracting English characters from text on the web or 

blog-sphere is proposed and tested. 

 
Index Terms— Science, random numbers, pseudo-random 

numbers, statistical tests.  

 

I. INTRODUCTION 

Since the ever-growing use and access of computer power 

in personal computers after the late 1970s and 1980s, random 

numbers, and more specifically, pseudo-random numbers as 

well as computer simulation, have become a very important 

tool for making science. However, random and pseudo 

random numbers need to be used carefully and properly. This 

paper comprehensible explores this issue, highlights some of 

the pitfalls and provides solutions to some of the problems 

observed. 

A good literature review on the subject of pseudo random 

number generation was carried out. There are different 

approaches and contributions to the theory of pseudo-random 

generators. Some articles deal with as much as robust 

possible pseudo-random bit generation so that good enough 

cryptography properties can be achieved [1-4]. Other 

approaches use chaotic maps and in some cases Chebyshev 

maps for good cryptography properties [2][[5-9]. One 

approach analyzes the application of pseudo-random number 

generators in Finance and how robust they are for the high 

volume of pseudo-random numbers required [10]. Another 

approach highlights the flaw inherent in pseudo-random 

number generators when simulating coin tossing [11]. One 

particularly interesting and promising approach uses 

hardware in order to create pseudo-random number 

generators. Arguably, this approach can lead to very good 

true random number properties since the system is connected 

to reality [12]. Other papers focus on cellular automata 

pseudo-random based number generation and their 

cryptography properties [13-14]. Finally, there are papers 

focusing mostly on testing pseudo-random number 

generators [15-19]. 

Let x be a random number, where a ≤ x ≤ b. Then f(x) is the 
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probability density function associated to x. Clearly, equation 

(1) must be satisfied. If a = 0 and b = 1, x is a uniform random 

number, such that in order for equation (1) to be satisfied, f(x) 

= 1. The latter is illustrated in Figure 1. Generally speaking, 

for any uniformly distributed random number x, such that a ≤ 
x ≤ b, f(x) is given by equation (2). 
 ∫ f(x)dx+∞−∞ = ∫ f(x)dxba = 1 (1) 

 f(x) = 1b−a (2) 

 

Figure 1. Uniformly distributed standard random number. 

 
 

II. RANDOM AND PSEUDO-RANDOM NUMBERS 

Random numbers only exist is nature. The only way to 

obtain a sequence of truly random numbers is by getting them 

from nature. For example, a sequence of binary random 

numbers (0 or 1) can be obtained by tossing a coin. If it is 

heads it could be assigned a value of 0 and if it is a tail a value 

of 1. Another example would be to toss a dice in order to 

obtain truly random values between 1 and 6. 

The process of obtaining truly random real numbers 

between 0 and 1 is somewhat more complicated. To begin 

with, the set of all real numbers between 0 and 1 is infinite. 

Thus, some natural process that could manage that would be 

required. However, the universe, when measured, is discrete, 

and having any real number between 0 and 1 as a possible 

outcome would be impossible. In any case, drawing random 

numbers from the universe would be complicated and could 

take too much time. An option could be, for example, to get a 

measurement of the current in a given resistance at any given 

time, but that would not necessarily generate uniformly 

distributed random numbers. 

A practical way to solve this problem is required. In 

practice, something called pseudo-random numbers are used 

[20]. Pseudo-random numbers are numbers that seem to be 

uniformly distributed random numbers for a given series of 

numbers (called the size of the pseudo-random number 

generator or M), but after a maximum of M different 

numbers, the series repeats itself. That is why they are called 

pseudo-random, because they are not really random. 
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However, for practical purposes, they seem to be. It is said, 

due to the fact that pseudo-random numbers are not truly 

random numbers and because they are not used with care 

(considering what the implicit underlying assumption using 

such pseudo-random numbers involves), that approximately 

one third of the annals of science should be discarded. This 

scientific legend may be exaggerated, but it highlights, 

nonetheless, the importance of knowing the assumption in 

which pseudo-random numbers, used in science as if they 

were random numbers, implies. 

The mixed congruential method [20] is one of the most 

popular and widely used pseudo-random number generators. 

It is both fast and accurate enough. Let X0 be an initial 

random number for Xi when i = 0. Then, the next random 

number between 0 and M is given according to equation (3), 

where MOD is the operation of taking the residual of dividing 

AXi+C by M, A is a positive odd number not divisible by 3 or 

5, C is a positive odd number preferably prime to M, M > X0, 

M > A and M > C. 

 Xi+1 = (AXi + C) MOD M (3) 

The reason all pseudo-random numbers are between 0 and 

M is because it is impossible that the residual could be any 

number larger than M. In fact, it is always less than M, so that 

0 ≤ Xi ≤ M-1 for all i (i is the iteration number and it has to be 

a number greater or equal than 0). 

Then, a (presumably) uniformly distributed random 

number can be obtained according to equation (4) if it is 

desired that 0 ≤ Ri ≤ 1 or according to equation (5) if 0 ≤ Ri < 

1. 

 Ri = XiM−1 (4) 

 Ri = XiM (5) 

For simplicity of calculation reasons (not taking valuable 

computing time making the subtraction) equation (5) is most 

often used instead of equation (4) so that 0 ≤ Ri < 1. Table 1 

shows an example in which X0 = 0, A = 5 (for a moment let 

not consider the constraints imposed on A paragraphs above), 

C = 7 and M = 8. In this pseudo-random number generator, 

there are only a maximum of 8 different numbers, since M = 

8, and only 8 numbers fit between 0 and 8-1 = 7; these 

numbers being 0, 1, 2, 3, 4, 5, 6, and 7, although they appear 

in different order. Clearly, that is not really the behavior of a 

truly random number, because in reality, a given sequence 

can actually have repeated numbers without causing the 

whole sequence to start repeating itself. 

In the case of the sequence of pseudo-random numbers 

shown in Table 1, the sequence has the maximum possible 

number of values that do not repeat; in this case, that being 8 

(0, 7, 2, 1, 4, 3, 6, and 5; after 5 follows 0 and the sequence 

naturally starts repeating itself). 

III. TESTS ON PSEUDO-RANDOM NUMBERS 

The first test will be to create a series of 10,000 pseudo 

random numbers. Let R be any such random number. Then, 

in this case, 0 ≤ R < 1. Figure 2a shows a histogram with the 

frequencies of numbers R having a range of 10 intervals 

(0…0.1, 0.1…0.2, 0.2…0.3, …, 0.9…1). Figure 2b shows the 
probability density function of the resulting numbers. 

 

Table 1. Example of a mixed congruential generator. 

i Xi (5Xi+7)/8 Xi+1 0 ≤ Ri+1 < 1 0 ≤ Ri+1 ≤ 1 

0 0 0 + 7/8 7 7/8 = 0.875 7/7 = 1.000 

1 7 5 + 2/8 2 2/8 = 0.250 2/7 ≈ 0.285 

2 2 2 + 1/8 1 1/8 = 0.125 1/7 ≈ 0.142 

3 1 1 + 4/8 4 4/8 = 0.500 4/7 ≈ 0.571 

4 4 3 + 3/8 3 3/8 = 0.375 3/7 ≈ 0.428 

5 3 2 + 6/8 6 6/8 = 0.750 6/7 ≈ 0.857 

6 6 4 + 5/8 5 5/8 = 0.625 5/7 ≈ 0.714 

7 5 4 + 0/8 0 0/8 = 0.000 0/7 = 0.000 

8 0     

 

Figure 2. Uniformly distributed 10,000 pseudo-random 

numbers. 

a. Frequencies. 

 
 

b. Probability density function. 

 
 

In the case of Figure 2a, there are exactly 10,000 

pseudo-random numbers generated. However, the 

distribution is not exactly flat at exactly 1,000, but it varies 

around that number, because there is only a finite amount of 

numbers generated. Figure 2b shows how the density 

function is. Compare Figure 2b with Figure 1. Clearly, Figure 

2b is not flat because it is an approximation. In theory, and 

assuming the pseudo-random number generator generates 

truly random numbers (which is not the case), Figure 2b 

should be flat as the amount of pseudo-random numbers 

approximates infinity. Also, the width of the intervals should 

be zero at the limit, instead of equal to 0.1, as it is the case in 

Figure 2b (and also Figure 2a). 

The second test is to see what happens when integer 

numbers are required. In this case, the generated numbers 

have to be either 0 or 1. Let I be any such number and R be 

0

200

400

600

800

1000

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

F
re

q
u

en
cy

 
Ri 

0.0

0.2

0.4

0.6

0.8

1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

f(
x

) 

x 

http://www.ijerm.com/


International Journal of Engineering Research And Management (IJERM) 

ISSN: 2349- 2058, Volume-06, Issue-01, January 2019 
 

 3 www.ijerm.com  

 

any such uniformly distributed pseudo-random number 

between 0 and 1. Since 0 ≤ R < 1, then I is given according to 
equation (6), where ROUND(R) means rounding down to 

zero when R < 0.5 and rounding up to 1 when R ≥ 0.5. 
 I = ROUND(R) (6) 

Figure 3 shows the frequency distribution of 10,000 

pseudo-random numbers generated. It can be seen that the 

probability of having I = 0 is almost (but not exactly) half of 

one (0.4996 to be exact), while the other (almost) half is the 

probability of having a I = 1 (0.5004). 

 

Figure 3. Frequency distribution of two possible outcomes. 

 
 

Clearly, this case seems to be acceptable. But things 

change if one is not careful. Consider now any given 

uniformly distributed zero-one pseudo-random number R, 

such that 0 ≤ R < 1. Now extend the previous idea to having 
as outcomes any given integer number I, where I could be 

equal to one, two or three. At first sight, equation (7) should 

give such results. The result of multiplying R by 2 is a 

number between zero and two and by adding one the number 

becomes a value between one and three. 

 I = ROUND(2R)+1 (7) 

Figure 4 shows the frequency distributions and probability 

distributions (not to confuse the latter with probability 

density function) of simulating 10,000 pseudo-random 

numbers and calculating in each case the value of I. 

 

Figure 4. Frequency distribution and probability distribution 

of problematic use of pseudo-random numbers. 

 
 

Figure 4 clearly shows an incorrect use of pseudo-random 

numbers. For values of I equal to 1 and 3, the probability is 

approximately 25%, while for a value of I equal to 2, the 

probability is approximately 50%. Certainly, all probabilities 

should be equal around 33.3%. But that does not happen. 

Where is the error? 

Notice the way equation (7) is structured. It says 

ROUND(2R)+1. That means 0 ≤ 2R < 2. Thus, if 0 ≤ 2R < 

0.5, the result is 0 and I = 0+1 = 1. However, that range is 

only 25% of the whole range. Also, if 0.5 ≤ 2R < 1.5, the 
result is 1 and I = 1+1 = 2. The range of the latter includes 

half of all results, and thus the probability of occurring is 

50%. Finally, if 1.5 ≤ 2R < 2, the result is 2 and I = 2+1 = 3, 
with a probability of occurring equal to 25%. That accounts 

for the mistakes observed. It may not seem obvious, but a 

considerable number of researchers whose results depend on 

schemes similar to the ones analyzed here, could end up 

making the same kind of mistakes. 

How can it be corrected? Instead of using the rounding 

function, it is better to use the bottom function. Equation (8) 

shows such correction. The modified braces mean 

TRUNCATE(3R), which means taking only the integer part 

of 3R and letting go of the fractional part. 

 I = ⌊3R⌋ + 1 (8) 

Figure 5 shows the result of simulating 10,000 

pseudo-random numbers. This time, the probability behavior 

for I is flat around 1/3 probability for each occurrence of I 

(one, two, and three). 

 

Figure 5. Frequency distribution and probability distribution 

of correct use of pseudo-random numbers. 

 
 

IV. CHARACTERISTIC OF MIXED CONGRUENTIAL 

PSEUDO-RANDOM NUMBER GENERATORS 

Mixed congruential pseudo-random number generators are 

described using equation (3) as discussed by Coss Bu [20]. In 

order to ascertain the characteristics of this type of 

pseudo-random number generators, it is necessary to simplify 

things a little bit. Consider the congruential number generator 

described by equation (9). 

 Xi+1 = (Xi+1) MOD 10 (9) 

This is a very simple generator, but it is useful to illustrate 

a basic property of the modulus (taking the residual of the) 

operator. Suppose X0 = 0. According to equation (5) that 

corresponds to the uniform pseudo-random number R0 = 0/10 

= 0.0. Then, X1 = (0+1) MOD 10, which is 1, where R1 = 1/10 

= 0.1. Then follows X2 = (1+1) MOD 10 = 2, where R2 = 2/10 

= 0.2. And so on until X9 = (8+1) MOD 10 = 9, having R9 = 

9/10 = 0.9. The numbers obtained where the sequence 0, 1, 2, 

3, 4, 5, 6, 7, 8, and 9. After that the sequence repeats itself, 

since X10 = (9+1) MOD 10 = 0 and R10 = 0/10 = 0. In this 

simplified case, all possible numbers between 0 and 9 came 

out in order. It can be seen that by using the residual 

operation at best M different numbers can occur. Then, the 

sequence will repeat itself. Is it possible to obtain any number 

between 0 and 1? The answer: no. However, the frequencies 

will be flat, which is the important part. By changing the 
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parameters A and C in equation (3) it is possible to obtain a 

different sequence of M-1 numbers, but such sequence will 

always appear in the same order. Clearly, if M is large 

enough, that may not matter, but it does, because there would 

be repeating numbers. If one tosses a dice, it is possible to 

obtain the same consecutive output a few times, but always 

tossing a dice results in a different sequence as long as we are 

considering all the sequences from the beginning of the 

series. In mixed congruential pseudo-random number 

generators that is not possible. 

 

V. GENERATING RANDOM NUMBERS 

So, how is it possible to get truly random numbers? The 

only way is to use nature as a source of such random 

numbers. A practical and simple enough way to get truly 

random sequences is to rely on text obtained from the 

blog-sphere, such as twitter, for example, or documents from 

a very large database such as the Wikipedia. 

But how can we ensure that the behavior of such numbers 

is truly uniformly distributed? As an exploratory example, 

three themes were chosen. The first one is the World Wide 

Web (www). An interesting but perhaps ahead of its time and 

problematic account of the future of the World Wide Web 

can be found in Kurzweil [21]. The second theme selected 

was DNA. Sagan [22-23] explores some of the most 

important ideas concerning DNA. The third theme selected 

was Artificial Intelligence (AI). A very practical and down to 

Earth account of AI can be found in Boden [24]. These topics 

were searched in the Wikipedia and the results were copied 

and pasted into an ASCII based text format with the file 

names www.txt, DNA.txt, and AI.txt. ASCII are characters 

that can take any value between 0 and 255, where each 

character occupies one byte of information. The texts were in 

English. In order to simplify, only letters from A to Z and 

from a to z were considered, having the characters going 

through an UPCASE function, which transforms all letters 

into capital letters. 

The problem is that letters do have a different frequency of 

occurrence. All three texts (www, DNA and AI) were 

analyzed and the relative occurrence of each letter from A to 

Z was calculated. It was clear that letters do have a very 

different probabilistic behavior. Thus, only specific letters 

having almost the same probability of occurring were 

considered. These letters are A, I, N, O, R, S, and T. Table 2 

compiles the information gathered. 

As it can be seen in Table 2 letters A, I, N, O, R, S, and T 

do have approximately the same number of occurrences in 

each text file. The letters A, I, N, O, R, S, and T, are assigned 

the numbers (X) 0, 1, 2, 3, 4, 5 and 6, respectively. There is a 

total of M=7 different numbers. In order to get a uniform 

random number, R is obtained by dividing X by M. Only the 

first two digits after the decimal point are being used to obtain 

a four digits presumably uniformly distributed random 

number. Approximately 51% of the total number of letters in 

the text files are covered by these seven letters, and 

approximately 38% of these seven letters constitute the total 

size of the file, where the size of the file only includes the 

total number of characters it contains, without line jumping. 

Figure 6 pictures the probabilities. 

 

Table 2. Probabilistic behavior of selected letters in all three 

texts. 

   

Frequency Probability 

Letter X R = X/M www DNA AI www DNA AI 

A 0 0.000000 2,593 6,337 7,123 0.1414 0.1611 0.1536 

I 1 0.142857 2,744 5,942 7,709 0.1496 0.1511 0.1662 

N 2 0.285714 2,487 6,167 7,038 0.1356 0.1568 0.1518 

O 3 0.428571 2,447 5,592 6,263 0.1334 0.1422 0.1350 

R 4 0.571429 2,520 4,767 5,678 0.1374 0.1212 0.1224 

S 5 0.714286 2,450 4,872 5,823 0.1336 0.1239 0.1256 

T 6 0.857143 3,099 5,657 6,742 0.1690 0.1438 0.1454 

M = 7 Total selected 18,340 39,334 46,376 

   

  

Total for all 

letters 36,073 75,041 88,830 

   

  

Relative 

percentage 50.84% 52.42% 52.21% 

   

  

File sizes 47,900 105,428 121,285 

   

  

Sizes 

percentages 38.29% 37.31% 38.24% 

    

Figure 6. Probability distribution of the seven letters 

selected. 

 
 

Although the behavior in the three cases (www, DNA and 

AI) does not provide a flat occurrence of probabilities, it is 

approximately flat. What is more important is that the 

outcomes will be truly random if any text in English taken 

from the web or the blog-sphere is used. Nevertheless, it 

would be useful to have the possibility of other numbers to 

occur besides the ones shown in Table 2. Let R denote any 

such number. Then, RR can be computed according to 

equation (10), where each R is a different and consecutive 

occurrence obtained from the system. Thus, a couple of 

different and consecutively random numbers (R1 and R2) are 

used such that the first one constitutes the first two decimal 

points and the second one constitutes the second two decimal 

points. In this way, RR can contain a total of 4 useful decimal 

digits. 

 RR =  ⌊100R1⌋100 + ⌊10000R2⌋−100⌊100R2⌋10000  (10) 

The RR numbers are in theory truly random numbers. 

However, do they pass the statistical tests for uniformly 

distributed random numbers? There are several statistical 

tests available, but the two most common ones are the means 

test and the variance test. A total of 1,000 RR numbers are 

taken from the files www.txt, DNA.txt and AI.txt. They are 

compared with 1,000 numbers generated by Delphi’s internal 

random number generation system and 1,000 random 

numbers generated by Excel. The Delphi and Excel random 

numbers generated are different for each of the three text files 
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being used (n = 1,000). 

 

VI. MEAN STATISTICAL TEST FOR UNIFORMLY DISTRIBUTED 

RANDOM NUMBERS 

The aim is to prove that the population mean (known to be 

½ = 0.5) is significantly equal to the sample mean 

(calculated). An unknown sample mean and a known 

variance is what we have in this case. The null and alternative 

hypothesis are as follow: 

H0:  = 0 

  = ½ 

H1:  ≠ 0 

  ≠ ½ 

Figure 7 illustrates the test and the acceptance (pass) area. 

The z (normal) statistical distribution is used. 

 

Figure 7. Means statistical test criteria. 

 
The error type I is being minimized, that is, rejecting H0 

when in fact is should be accepted, which is equivalent to 

saying that the sample mean is not equal to the population 

mean when in fact it is. 

A calculated z statistic (z0) is compared against a z normal 

statistic from tables (z/2). Equation (11) shows the 

calculation of the z0 statistic, where the population variance 

(2
) is 1/12. Notice that the sample mean ( x̅ ) is given 

according to equation (12). 

 𝑧0 = �̅�−𝜇0𝜎/√𝑛 = �̅�−12√ 112/√𝑛 (11) 

 x̅ = ∑ xini=1n  (12) 

The acceptance criterion is if z-/2 < z0 < z/2, then H0 is 

accepted, which means the set of presumed random numbers 

has passed the test. Otherwise, it is not. 

VII. VARIANCE STATISTICAL TEST FOR UNIFORMLY 

DISTRIBUTED RANDOM NUMBERS 

The variance test questions whether or not the sample 

variance is within the accepted range for the population 

variance. The null and alternative hypothesis are as follows: 

H0: 2
 = 0

2
 

 2
 = 1/12 

H1: 2
 ≠ 0

2
 

 2
 ≠ 1/12 

The sample variance is known and it is compared with an 

unknown population variance. Figure 8 illustrates the 

variance test acceptance criteria. The ji-square (2
) statistical 

distribution is used. A calculated 0
2
 is compared with 2

 

distribution values. The degrees of freedom of the test are  = 

n-1. 

 

Figure 8. Variance test acceptance criteria. 

 
Equation (13) shows the calculation of the 0

2
 statistic 

figure, while equation (14) pictures the calculation of the 

sample variance (S
2
). 

 χ02 = S2(n−1)σ02 = S2(n−1)1/12  (13) 

 S2 = ∑ (xi−x̅)2ni=1n−1  (14) 

 

VIII. RESULTS OBTAINED FROM THE EXPERIMENTS AND THE 

STATISTICAL TESTS 

The results obtained are positive. The proposed method for 

obtaining truly random numbers did pass both tests (mean 

and variance). Also, the pseudo-random numbers obtained 

from Delphi and the pseudo-random numbers obtained from 

Excel also passed both tests. Table 3 summarizes the results 

for the mean test and Table 4 shows the results for the 

variance test. The confidence is 95% ( = 0.05). 

 

Table 3. Results of the mean test. 
 = 

0.05 www DNA AI 

Statistic RR Delphi Excel RR Delphi Excel RR Delphi Excel 

z0 -0.0057 -0.0007 0.0014 0.5002 0.0000 0.0008 0.0003 -0.0003 0.0003 

-z0.025 -1.96 -1.96 -1.96 -1.96 -1.96 -1.96 -1.96 -1.96 -1.96 

z0.025 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 

Result Passed Passed Passed Passed Passed Passed Passed Passed Passed 

 

Table 4. Results of the variance test. 
 = 
0.05 www DNA AI 

Statistic RR Delphi Excel RR Delphi Excel RR Delphi Excel 

0
2
 1002.64 990.35 955.93 1020.48 982.65 983.65 1041.69 969.86 1016.82 

n-1,0.025
2
 913.30 913.30 913.30 913.30 913.30 913.30 913.30 913.30 913.30 

n-1,0.975
2
 1088.49 1088.49 1088.49 1088.49 1088.49 1088.49 1088.49 1088.49 1088.49 

Result Passed Passed Passed Passed Passed Passed Passed Passed Passed 

 

IX. DISCUSSION AND CONCLUSION 

The problem of pseudo-random generators, whatever their 

nature may be, is that they are not really random. That means 

that there could be some inherent pattern in their behavior. To 
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illustrate, consider having a sequence of pseudo-random 

numbers and plotting them on a three-dimensional 

scatterplot. The first such number would be the first 

occurrence of the first coordinate (x1), the second number the 

first occurrence of the second coordinate (y1), the third 

number the first occurrence of the third coordinate (z1) and 

then again, the fourth number for the second occurrence of 

the first coordinate (x2), and so on. By carefully choosing the 

angle of view, it is possible, in some cases, to find a pattern, 

such as the one illustrated by Figure 6. 

 

Figure 6. Pattern on a three-dimensional scatterplot of 

pseudo-random numbers. 

 
 

Although testing the sequence of pseudo-random numbers 

may result in passing all statistical tests, it is clear from 

Figure 6 that the numbers are arranged in a specific pattern. It 

is not possible to have numbers in between the planes 

perpendicular to the observation plane found in Figure 6. 

Thus, the sequence of pseudo-random numbers is not truly 

random. 

A solution may be to obtain the random numbers from an 

irrational number, such as √2 or √3. Since these sequences 
continue to infinity, in theory, irrational numbers could 

provide a source for truly random numbers. There are 

algorithmic procedures for finding the square root of a prime 

number. However, as the sequence goes on, the memory 

requirements grow, and, in any case, the procedure would not 

allow for a fast creation of random numbers. Also, an 

irrational number like  could be the source of random 

numbers. However, the existence of an algorithmic procedure 

fast enough for finding irrational numbers with any desired 

degree of accuracy (any given number of digits) is dubious. 

If we are guided by the idea that random numbers only 

exist in nature, it may be possible to construct a device, such 

as a measurement of current in a given transistor, in order to 

obtain sequences of random numbers. The problem with this 

method is that it depends on a specific hardware 

implementation. Another way to go around this problem 

could be to obtain text from the on-line blog-sphere and 

transform such sequences of characters into numbers. This 

second method is not hardware dependent, but it does require 

an internet connection, which is in most cases the norm. 

Furthermore, since the blog-sphere is the result of people 

interacting on-line, there are even some philosophical and 

theological conundrums that can be solved in this way. 

Let R be a pseudo-random number such that 0 ≤ R < 1. In 
such case, if a total of d digits are required after the decimal 

point, equation (15) can be used. 

 Ri = ⌊10dR⌋10d  (15) 

If a binary number from Ri is to be required, the ROUND 

function can be used, which is correct from a technical point 

of view (refer to Figure 3). The round function is represented 

here using top brackets as shown in equation (16). 

 Ii = ROUND(Ri) = ⌈Ri⌉ (16) 

Alternatively, if Ri from equation (15) has four decimal 

points, Ri can take values from 0.0000 to 0.9999. Multiplying 

that by 2 results in the range 0.0000 ≤ 2Ri ≤ 1.9998, and thus 
equation (17) can be used to get binary numbers (0 and 1) 

with equal frequency distributions between the zeroes and the 

ones. 

 Ii = ⌊2Ri⌋ (17) 

If we are to take only the first two digits of a sequence of 

random numbers generated according to the method here 

proposed, there would be only seven different possible 

outcomes: 0.00, 0.14, 0.28, 0.42, 0.57, 0.71, and 0.85. 

Although there is only a limited number of possibilities, the 

sequence in which they appear would be truly random 

because they are based on seven different selected characters 

from texts taken from the web or the blog-sphere (Twitter for 

example). By combining any number of sequences of two 

digits, random numbers of any desire number of decimal 

places can be obtained. Let dd be the total number of 

two-digit random numbers Ri obtained for each RR, where i = 

1, …, dd, then RR can be given according to equation (18). 

 RR = ∑ ⌊100Ri⌋102iddi=1  (18) 
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