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 
Abstract— H filtering problem has been a particular 

important issue in networked control systems(NCSs) during 

recent years. As we know, the use of inequality technique when 

dealing with some cross terms is always a main source of 

conservatism. This paper firstly applies a Wirtinger-based 

inequality to H filtering problem for linear system with time 

delay. Considering the advance of novel summation inequality, 

we conclude a sufficient condition that guarantees system stable. 

Based on new delay- dependent bound real lemma(BRL) we 

obtained, a novel H  filter design approach is proposed in 

terms of linear matrix inequality(LMI). Then, we address 

coupling between Lyapunov Functional and system matrix by 

congruence transformation. Finally, a H  filter has been 

designed, which with much lower conservatism. 

 
Index Terms— NCSs; H filter; time-varying delay; delay  

partitioning; Lyapunov-Krasovskii functional；Wirtinger-based 

inequality 

I. INTRODUCTION 

NCSs
[1][2]

 lies in the intersection and combination of control 

theory, computer network and communication technology, 

which naturally brings resources sharing, mobile performing, 

easy installation and maintenance, high flexibility and 

reliability and so many other characteristics. NCSs has been a 

hot field both in theory study and practical engineering due to 

its outstanding virtues. On the other hand, network inevitably 

introduces some constraints into control systems, such as time 

delay and packet dropout which may drastically degrade the 

performance of system and even lead to instability. So it's 

certainly necessary to account time-delay during the process 

of system modeling and analysis. 

    H  filter design
[3-6]

 for system with time delay has been 

one of the hottest theme in control field over past decades.The 

objective of H filtering is to design a filter which satisfies 

the requirement that H norm of the filtering error system is 

minimal based on the assumption that the input noise signal is 

energy bounded. Regarding the existing results on H filter 

design for discrete-time delayed systems, much endeavor has 

been made to derive some delay- dependent criteria because 
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delay-independent conditions
[7-10]

 are much more 

conservative, especially for small time-delays. Anyway, how 

to address cross terms remains an important but meanwhile 

hard work. The author used famous Moon inequality
[11]

 to 

bound the intersection terms in paper[12]. In 2000, Jesen 

inequality became the most popular method  employed to 

integral or summation inequality scaling
[13]

. 2012, based on 

Wirtinger inequality
[14]

 which includes Jesen inequality, 

papers [15] and [16] improved the results. 2015, 

Free-weighted matrices theory
[17]

 was successfully displayed 

in the stability analysis of system with time-delay, which 

comprehensively considered system state, input, output and 

other terms. So it brings relatively lower conservatism. 

However, there is still a huge space to progress in the choice 

of  L-K functional and in the process of dealing with cross 

terms.  

 Therefore, the new scaling technology is creatively adopt to 

filter design in this paper to solve H filtering problem.  

Accounting the fact that Wirtinger inequality is advanced than 

Jesen inequality or  Free-weighted matrices method, 

eventually the conservatism is obviously reduced.  

 

II. PRELIMINARIES 

 

A. LEMMA 1[16] 

Given symmetric matrix  ,
n

Z
S  and Any discrete time 

variable  0, ,   1,
n

x d Z d  R  the following inequa- 

lity holds: 
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B. LEMMA 2[16] 

,m n are both positive integers. Given symmetric matrices: 

1 ,
n

S
S 2 ,

m
S

S
 

If there exists ,n m
X

R which satisfies 
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Then for any scalar (0,1),   the following inequ- 

ality holds: 
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C. Lemma 3[18] 

Assuming that there exist symmetric matrices P and G， the  

inequality: 

0,T
PP A A                              (4) 

is equivalent to 

( )
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P GA
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                  (5) 

D. PROBLEM FORMULATION 

The  linear discrete system with time-invariant delay can be 

described as follows: 

,,...,d,dφ(k),kx(k)

kL)dx(kHHx(k)z(k)

kD)dx(kCCx(k)y(k)

kB)dx(kAAx(k)) x(k

kd

kd

kd

01

),(

),(

),(1

22 










           (6) 

where ( ) n
x k  is the state vector, ( ) q

y k  means the 

measured output, ( ) p
z k   is the signal to be estimated, 

( ) l
k  denotes the noise input which satisfies   

2{ ( )} [0, ];k L   And ( ) ( ),x k k in which 22 d,dk   

01,..., is the given initial condition sequence; kd means the 

time delay and is assumed to satisfy 211 ddd k  with 1d  

and 2d being the known lower and upper bounds of delay, 

respectively. , , , , , , , ,
dd d

A A B C C D H H L are known time- 

constant system matrices. 

The goal of this paper is to design a full-order linear 

asymptotically stable filter for system(4) with state-space 

realization of the form: 

y(k),D(k)xC(k)z

y(k),Bx(k)A)(kx

FFFF

FFF


1

                     (7) 

where ( ) n

F
x k   denotes the filter state; , , ,

F F F F
A B C D  

are filter matrices to be determined. 

Augmenting system (6) to include the filter states in system 

(7), we obtain the filtering error system as follows:  
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Considering the fact that there is no control input in the 

original system model, the asymptotic stability of the filtering 

error system must be based on the assumption that system (6) 

is asymptotically stable. 

 

The  objective of this paper is to explore full-order H  

filters of form(7) meeting the following requirements: 

1. the filtering error system in (8) is asymptotically stable; 

2. under zero-initial conditions,  for all nonzero ),0[2  l  

and a given proper positive constant scalar  ,the filtering 

error system in (8) guarantees 

，
22

ωγe                                  (9) 

III. H PERFORMANCE ANALYSIS  

First, we assume that filter's parameters are known, the 

following theorem presents sufficient conditions ensuring that 

estimation error system (8) is stable and has a prescribed H  

level   in the FF domain of input noise. Based on the new 

conditions, the filter design method will be proposed later. 

Theorem 1. For integers 211 dd  , scalar 0 ,   

provided that there exist real symmetric matrices 0,P 
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re , 1,2,i j  the close system (7) meets H  application if the 

following inequality holds: 
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Proof: By virtue of new summation inequality technique, 

we choose the following L-K functional candidate: 
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According to Lyapunov stability theorem, 1( ) ( )V k V k   
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P

P

 
 

 
 

 





  


    

  
 



 

19 23

24

2

0,                   

0

0* * * * * * * * * * *

* * * * * * * * * * *

7

*

2

I

 
 
 
 
 
 
 
 
 
   
 
 
 
 
 

  
 
 

  

2 3 4( ) ( ) ( ) 0,V k V k V k   
 
arrange inequalities from  

(16) to (23), and assume ( ) 0,k  we have 

( ) ( ) ( ) 0,T
V k k k    

                         

(24) 

Where,  

2 1 42 1= T T
P    ， 

5

1 5
4

2

5

1

2

5

5
2

0 0
0 0 0

* 0 0

*
0

*

*
0

* * 0

,
0

n n

n n

n n

n n

T

S

Q
X S

R
S X

Q

 







 
 



 
   
  
 


  
 
  

 

2 2

2 2

2 2

0

0 0 ,

0

n n

n n n n

n n

M

M

M



 



 
 

   
 
 

 
  Then, accounting H performance index, we define  

2

0

( ) ( ) ( ) ( ) ,T T

k

J e k e k k k  




  
          

(25) 

Under zero initial condition, due to ( )V k is Lyapunov 

functional, so (0) 0V  and ( ) 0V    are always valid. The 

following inequality (26) holds: 

2

0

2

0

1 1

0

( ) ( ) ( ) ( ) ( ) (0)

( ) ( ) ( ) ( ) ( )

( ) ( )

T T

k

T T

k

T T

k

J e k e k k k V V

e k e k k k V k

k k

  

  

 













      

     

 





   

(26) 

2 2 1 13 3 4= ,T T T
P         

From (26), we find 0  is the sufficient condition of 

0,J  By Schur complement, 0   is equivalent to the 

inequality in (10). So we can conclude that filtering error 

system in (8) with ( ) 0k   is asymptotically  stable if the 

inequality in (10) holds. And for all
2( ) [0, ),k l   meeting 

H performance index
2( ) ( )e k k ‖ ‖ ‖ ‖ . 

H filter design 

In this section, we will try to solve the H  filter design 

problem based on the obtained BRLs. 

Theorem 2. For system(8), if the LMI as (27) is solvable,  

H  filter exists. If there exist matrices 1 2 3,  , , ,  V V V F and 

symmetric matrices , , , ,F F FFA B C D
1 2

3

,  
*

P P
P

P

 
  
 

Q   

0,T

i
Q  0, 0,T T

j
R R S S   

, 1,2,i j  1 2

3

,
*

X X

X
X

 
  
 

 

Where， 

1 1 2 1,    ,    T T
F Fd d

V A B C V A B C      

3 1 4 3,  ,      T T
F FV B B D V A B C    

 

5 3 6 3,    ,T T
F Fd d

V A B C V B B D    

1 2 3( ),    ,     ,   T T T

d
F A I F A F B     

1 2 3,    ,   ,F F Fd d
H D C H D C L D D       

 
1 21 1 1 2 2 3,    ,    T

P V V P V V       

33 2 2 4,    ,T T
P V V F F      

5 1 1 2 12

6

1 1

1 1 7 1 1 2 1

( 1) ,   (3 ( ) 1)

(3 ( ) 1) ,  (3 ( ) 1) 4 ,    

 P Q Q r d S

r d S r d

d

S S

R

Q

       
 


       

8 2 1 2 3 9 2 1 3 22 2 ,   8 2 2 ,    S X X X S X X Q R          

10 1 3 11 2 1 2 3,    2 2 ,X X S X X X        
 

12 2 13 1 1

14 1 1 15 1 1

4 ,    6 ( ) ,     

6 ( ) ,    =12 ( ) ,

S r d S

r d S r d S

    

     

16 2 17 2 2 3

18 2 3 19 2

6 ,    6 2( ),     

2( ),    =12 ,

S S X X

X X S

       

     

20 2 3 21 2 2 3

22 2 23 3 24 2

2( ),   6 2( ),    

6 ,   =4 ,   =12 ,

X X S X X

S X S

        

      

1 1

2 2,     ,     

C C ,     D .

F FF F

FFF F

A V A B V B

D

  

   

Furthermore, the filter realization can be gained by： 
1 1

2 2,     ,     C C ,     D .F F FFF F F F
A V A B V B D

        (28) 

Proof. Given matrices , ,G F by lemma 3, the gained BRL 

(10) is equivalent to the following inequality: 

1

2

3

4

0 0

* 0
0,

* *

* * *

T

T

T

T
GP

I

F

G G

F F

  
    









 
  

         

(29) 

Noting that 0P  and the LMI in (27) holds, so 
3 0P   

and
3 2 2 0T

P V V     can be obtained respectively. It is 

obvious that 2 2 0,T
V V  i.e. 

2V  is nonsingular. As a result, 

there always exist square and nonsingular matrices U  
and 22G satisfying 

1

2 22

T
V U G U

 . Construct matrix varia- 

bles  as follows:  

1 1

22

0
,

0

I
J

G U


 
 
 

1

12 3 22 ,G V U G


 

          

(30) 

1 12

22

,
V G

G
U G

 
  
 

1 2 1

1 1

3

,
*

T
P P

P J J
P

 
 

  
          

(31)

 
1

22

1

22

,   ,   

,   ,

T T
F FF F

FFF F

A U A U G B U B

C C U G D D

  



 

   

2 1 1{ , , , , , , , , , , },J diag J I I J I I I I I I I  
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we can see (25) and 0P  are equivalent to: 

2 2 0,   T
J J                                   (32)

 
1 1 0,T

J PJ                                        (33) 

 So by applying congruence transformation to (32) and (33). 

It is readily seen that (27) is equivalent to (10). Therefore, 

from Theorem 2, it can be concluded that the filter with 
state-space realization ( , , , )

F F F F
A B C D  defined in (7) 

guarantees that the filtering error system in (8) is 

asymptotically stable with an H∞ noise attenuation level 
bound .By substituting 1

2 22

T
V U G U

  , we can get the filter 

state-space realization. 

we rewrite ( , , , )
F F F F

A B C D  as 

1 1 11 1
2 222 220 0

,
0 0

F FF F

FF F F

A B V A V BU G U G

C D I IC D

        
      

       
 (33)

 Considering U and 
22G  are  non-singular,  ( , , , )

F F F F
A B C D   

is algebraically equivalent to 1 1

2 2( , , , )F F FFV A V B C D
  . 

Thus a state-space realization ( , , , )
F F F F

A B C D  of the 

prescribed filter can be obtained as (28). This completes the 

proof.  

IV. SIMULATION EXAMPLES 

In this section, we present several examples to illustrate the 

effectiveness and advantages of obtained results. All the 

calculations are finished by Matlab LMI toolbox. 

A. Example 1 

First，considering system(6) with specific parameters： 

0.8 0 0.1 0.15
,  ,  

0.1 0.9 0.1 0.15
d

A A
   

        
 

 1 ,
0

,  1
1

B C
 

  
   
 0.4  0. ,  16 ,  

d
C D 

 
   2 0.5 0.61 ,  ,  0.5,

d
LH H   

 
And 1 26,  8,  d d  By theorem 2，we get optimal 

solution
* =9.9691 which is less conservative than existing 

results. When 2 9,d  H filter realization 

F F

F F

A B

C D

 
 
    

are： 

-5 -5

0.1250  0.1086 0.2255

 0.1380 0.3049 0.3008

1.4573 10 1.8674 10 1.4699

 
 

 
    

，

          

（34） 

More detailed results are showed in table 1 ： 

2d  
7 8 9 

[4] 7.5050 13.8580 ∞ 

[19]theorem 4 6.0430 8.7038 13.9799 

[19]theorem 5 6.2928 10.3752 29.9862 

Theorem 2 5.9430 8.7332 15.3765 
Tabel 1 

B. Example 2 

Considering system(8) with following state-space matrices：

 

 

 
   

0.85 0.1 0.2 0
,  ,  

0.1 0.7 0.2 0.1

,  ,
0.4

0.1
0.2 2.5

,  1,  

,  ,  0

0.5  0.5

0 2.2 1.5 1. .0 ,4
d

d

d

A

H

A

B C

C D

LH

   
        
 

  
 
  

  





 

Let 
1 22,  6,d d  we get optimal solution 

* =3.9910  which 

with lower conservativeness compared with existing papers.  

H filter parameters are：

 

-5 -5

0.1250  0.1086 0.2255

 0.1380 0.3049 0.3008

1.4573 10 1.8674 10 1.4699

 
 

 
    

，

         

（37） 

Similarly,more detailed simulation results can be found in 

table 2 which showed different results when time-delay upper 

and lower bound are different. 

1d  1 1 2 2 

2d  4 5 5 6 

[5]  4.9431 6.1608  5.3551  6.7581 

[19] 3.6545 4.6494 5.3458 6.7185 

Theorem 2 2.7162 3.4553 4.7441 4.7742 

Table 2 

V. CONCLUSION 

The delay-dependent results of H filtering problem for 

discrete-time systems with time-delay has been given in this 

paper.By constructing proper L-K functional and applying a 

novel Wirtinger-based inequality to address summation items 

produced by difference of LKF, two new delay-dependent 

BRLs have been present.  The proposed H  filter design 

procedures are formulated in terms of LMIs, which can be 

easily solved by the LMI toolbox in the MATLAB. Finally, 

two numerical examples have been presented. Due to 

Wirtinger inequality is advanced than Free-weighting matrix 

or Jensen inequality methods. The obtained results have much 

more advantage over the most existing results. 
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