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Abstract— — In this paper we have studied some affine 

connexions in a Hsu-structure manifold. Certain theorems have 

also been proved, which are of great geometrical importance. 

 
Index Terms— C∞-manifold, Hsu-structure, Hsu-metric 

structure, F-structure, π-structure 

 

I. INTRODUCTION 

We consider a differentiable manifold nV  of differentiability 

class 


C and of dimension n . Let there exist in nV  a tensor 

field F of the type (1, 1), s linearly independent vector fields 

siU i ...........,2,1,  and s linearly independent 1-forms 

i
u such that for any arbitrary vector field X , we have 

         
,)( i

ir
UXcuXaX                                               (1.1)       

         
j

j

ii UpU                                                                            (1.2)                                             

 

Where 

         
  XXF

def

 and ca
r , are constants 

Then the structure  sjipUuF
j

ii

i .........,,2,1,;,,, 
 

will be known as Hsu-structure and nV  will be known as  

Hsu-structure manifold of order s where s < n.   

  

Definition: A structure on an n-dimensional manifold M of 

class


C given by a non-null tensor field F satisfying 

                IaF
r2

       

is called  - structure or Hsu-structure, where a  is a non zero 

complex constant and I denotes the unit tensor field. Then 

M is called  - structure manifold or Hsu-structure 

manifold[8]. 

 

Agreement 1.1 

All the equations which follow hold for arbitrary vector 

fields ZYX ,, ….. etc. 

Now replacing X by X in (1.1), we get  

     
  i

ir
UXucXaX                                                        (1.3)                   

Operating F in (1.1), we get  
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        i

ir
UXucXaX             

Using (1.2) in above, we get 

      
  j

j

i

ir
UpXucXaX                                                (1.4) 

From (1.3) and (1.4), we have 

      

i

j

ji
pXuXu )()(                                                                (1.5)   

Further, operating F in (1.2) and using (1.1 and (1.2), we get 

      
)()2(

i

jj

i

rj

i Ucuap                                                 (1.6) 

Where 

          

k

j

i

k

ri

j

r
ppp

)1()(               

On Hsu structure manifold nV  , let us introduce a metric 

tensor g such that F
'

defined by ),(),('
YXgYXF

def

   is 

skew-symmetric, then nV  is called Hsu metric structure 

manifold. 

 We have on a Hsu metric structure manifold 

       
.0),(),(  YXgYXg                

Replacing Y  by Y in above equation and using (1.1), we 

obtain 

      
0)()(),(),(  YuXucYXgaYXg

iir
        (1.7) 

Where  

       
),()( XUgXu i

i                                                               (1.8)                  

Then nV  satisfying (1.7), (1.8) is called Hsu metric structure 

manifold[5]. 

Agreement 1.2: The Hsu metric structure manifold will 

always be denoted by nV . 

Definitons: [1][4] 

Almost tangent metric manifold: A differentiable manifold 

nM  on which there exists a tensor field F of the type (1, 1) 

such that 

        02 F                                                                                         (1.9) 

 is called an almost tangent manifold and  F is called an 

almost tangent  structure on nM .  

    On almost tangent manifold, let us introduce a metric g 

such F
'

defined by ),(),('
YXgYXF

def


 

is alternating . Then nM is called an almost tangent metric 

manifold and structure gF,  is called an almost tangent 

metric structure. 

Almost Hermite Manifold: A differentiable manifold 

nM on which there exists a tensor field F of the type (1, 1) 

such that 

       nIF 2
                                                                               (1.10) 
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is called an almost complex manifold and  F  is called an 

almost complex structure. 

   An almost complex manifold endowed with an almost 

complex structure and a metric g such that  

     
),(),( YXgYXg                                                            (1.11)       

is called an almost Hermite manifold and structure 

 gF, is called an almost Hermite structure. 

Metric  structure manifold:  

 A differentiable manifold nM  on which there exists a tensor 

field F of the type (1, 1) such that  

       n

r
IF 2

                                                                         (1.12) 

where  is a non zero complex constant. Then F  is called a 

 structure or Hsu structure and nM  is called 

 structure manifold  or Hsu structure manifold. 

       On almost tangent manifold, let us introduce a metric g 

such that F
'

 is defined by  

 ),(),('
YXgYXF

def

  is alternating.  

Then gF,  is called metric  structure or H-structure 

and nM  is called metric   structure manifold or 

H-structure manifold[7][3]. 

 F-structure Manifold: Let nM  be an n dimensional 

differentiable manifold of class 


C  and let there be a tensor 

field of type (1, 1) and rank )1( nrr   everywhere such 

that     

        
03 FF                                                                            (1.13) 

Then  F  is called an F-structure and nM is called 

F-structure manifold[9]. 

Almost Grayan manifold: If on an differentiable manifold 

nM (n = 2m+1) of differentiability class 
1r

C , there exist a 

tensor field F of type (1, 1), a 1-form u and a vector field U, 

satisfying  

      
UuIF n 2

                                                           (1.14)      

and               

        0U                                                                                       (1.15)   

Then nM
 
is called an almost contact manifold and the 

structure uUF ,,  is said to give an almost contact 

structure to nM . 

On an almost contact manifold, let us introduce a metric g 

such that F
'

 defined by  

 ),(),('
YXgYXF

def

  is skew symmetric. Then nM
 
is 

called an almost Grayan manifold and the structure 

 uUgF ,,,  is called an almost Grayan structure[10]. In 

this manifold it can be easily calculated                               

       0)()(),(),(  YuXuYXgYXg                   (1.16)  

Torsion tensor: A vector valued, skew-symmetric, bilinear 

function S defined by  

        ],[),( YXXDYDYXS YX

def

                   (1.17)                                       

 is called torsion tensor of a connexion D in a 


C  manifold 

nV  . 

For the symmetric or torsion free connexion D, the torsion 

tensor vanishes. 

Curvature tensor: The tensor K of the type (1, 3) defined by 

ZDZDDZDDZYXK YXXYYX

def

],[),,(         (1.18) 

is called the curvature tensor of the connexion D. 

Remark 1.1 

It may be noted that nV  gives an almost tangent metric 

manifold, an almost Hermite manifold, metric  structure 

manifold, F-structure manifold, an almost Grayan manifold 

and  21

21 ,,,,, UUuugF  structure manifold 

according as  ;0,0  ca
r

  ;0,1  ca
r

 

 ;0,  ca
rr    ;0,1  j

i

r
pa  

 0,1,,1,1 1

1  pjica
r

 and 

 2,1,;0,1,1  jippca
i

j

j

i

r
respectively.                                               

Affine Connexion D: Let us consider in nV  an affine 

connection D satisfying[2][6]       

      
0)( YFDX

                                                                       (2.1)a 

and we call it as F-connexion.  

(2.1)a is equivalent to  

       
YDYD XX                                                                        (2.1)b   

Replacing Y  by Y  and using (1.1), (2.1)a in above, we get 

      
  0))(()(  i

i

XiX

i
UYuDUDYuc                (2.1)c   

 

Theorem 2.1 

In nV , we have 

  ))()(()( )2(
YuDpaUDuYcu

i

X

j

i

j

i

r

iX

ji       (2.2) 

  ))(( )2(

jX

j

i

j

i

r

jiX

j
UDpaUUDcu                   (2.3)                    

Proof 

Operating 
j

u  in (2.1)c and using (1.6) , we get (2.2). 

Putting iU   for Y in (2.1)c and using (1.6),  we obtain (2.3). 

 

Theorem 2.2 

In nV , we have 

),(),()),((),(),( YXSYXSUYXSucYXSaYXS i

ir 
  

       ],[],[,,, YXYXUYXcuYXaYX i

ir  (2.5)                    

Proof 

From (2.1)b, we get 

XDXDYDYDXDXDYDYD YYXXYYXX
 ,,,                                                   

                                                                                    (2.6) 

Now in view of (1.1), we get 

),(),()),((),(),( YXSYXSUYXSucYXSaYXS i

ir 

   ),(),(),(),( YXSYXSYXSYXS                   
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Using (1.17) and (2.6) in right hand side of above, we get 

(2.5). Now, we consider in nV  a scalar valued bilinear 

function  , vector valued linear function v  and a 1 –form 

 given by,  

))(())((),( YuDXuDYX
i

X

i

Y

def


                                                                                                             

                     ))(())(( YuDXuD
i

X

i

Y
                  (2.7)   

iXiXU

def

UDUFDXFDXv
i

 ))(())(()(           (2.8)           

and  

))(())(()( XuDUuDX
j

Ui

j

X

def

i
                   (2.9)      

..........,..........,2,1, sji 
 

Theorem 2.3 

In nV , we have 

)()([),()( )2(

iY

jij

i

j

i

r
UDuXucYXpa        

                     iU
j

uYDX
i

uiUXD
j

uY
i

u ))(()()(                                                                                                  

                      ]))(( iU
j

uXDY
i

u                                (2.10)a 

))(()([),()( )2(
YvuXucYXpa

jij

i

j

i

r       

                      iU
j

uYDX
i

uXv
j

uY
i

u ))(())(()(                                                                                          

                     ]))(( iU
j

uXDY
i

u                                 (2.10)b     

and   

 ))(()()([),()( )2(
XuDXXucYXpa

j

U

ij

i

j

i

r

i
 

        
   i

j

Y

ij

U

i
UuDXuYuDYYu

i
))(())(()()(                         

         ]))(( i

j

X

i
UuDYu                                                    (2.10)c      

Proof  

Replacing Y by Y in (2.2), we get  

))()(()()( )2(
YuDpaUDuYcu

i

X

j

i

j

i

r

iX

ji      (2.11)                              

Replacing X by X in (2.2), we get                     

))()(()()( )2(
YuDpaUDuYcu

i

X

j

i

j

i

r

iX

ji      (2.12) 

Further by using (2.11), (2.12) in (2.7), we get (2.10)a. 

Using (2.1)a in (2.8), we get  

)()( iX
UDXv                                                                       (2.13) 

Using (2.13) in (2.10)a, we get (2.10)b. Replacing X by X  in 

(2.9), we get  

))(()()( XuDXUDu
j

UiX

j

i
                           (2.14) 

Using (2.14) in (2.10)a, we get (2.10)c. 

In nV , we have 

i

ir
UZYXKcuZYXKaZYXK )),,((),,(),,( 

  
(2.16)a 

)),,(()),,(( ZYXKuaZYXKup
jrij

i      

                       )),,(()( )2(
ZYXKuap

ij

i

rj

i     (2.16)b  

and  

  ),,(),,(),,( YXZKXZYKZYXKa
r

       

             ),,()(),,()([ i

i

i

i
UZYKXuUYXKZuc                                                                             

     )],,()( i

i
UXZKYu                                     (2.16)c  

Proof           

Replacing Z  by Z in (1.18) and using (2.1)b, we get 

),,(),,( ZYXKZYXK                                                     (2.17)           

Operating F in (2.17) and using (1.1), we obtain (2.16)a. 

Operating 
j

u on both sides of (2.16)a and using (1.5) and 

(1.6), we get (2.16)b. Bianchi’s first identity of symmetric 

connexion D is given by  

 0),,(),,(),,(  YXZKXZYKZYXK        (2.18) 

Operating F in (2.18), we get  

0),,(),,(),,(  YXZKXZYKZYXK          (2.19)                  

Using (2.17) in (2.19), we get  

 0),,(),,(),,(  YXZKXZYKZYXK        (2.20)                    

Replacing X by X , Y  by Y and Z by Z in (2.20) and  

using (1.1), we get (2.16)c.                                         

Affine connexion D
~

: Let us consider in nV  an affine 

connexion D
~

 satisfying  

  0))(
~

()
~

)((  i

i

X

j

iX

i
UYuDcuUDYu                      (3.1) 

Theorem 3.1 

In nV , we have  

   
 jiX

j

iX

ri
UUDcuUDaYu )

~
()

~
()(            

                     0))(
~

(  k

k

j

j

i

i

X UppYuD                       (3.2)a    

    
)

~
()( )2(

iU

j

j

j

i

rj

i UDcuUdivap
j

                     (3.2)b 

Where 

     )( 1

1 XCXdiv
def

                                                                    (3.3) 

       )
~

( XDYX Y

def

                                                                   (3.4) 

Proof                      

Operating 
2

F in (3.1) and using (1.1) and (1.2), we get 

(3.2)a. Now contracting (3.1) with respect to X  and using 

(3.3) and (3.4), we get 

    
0))(

~
()(  YuDUdivYu

i

Ui

i

i
                                     (3.5)                    

Replacing i  by j , then Y  by iU  in (3.3) and using (1.6), 

we get (3.2)b.     

 

Theorem 3.2 

In nV , we have 

0))(
~

)(()
~

()( )2(  YuDapUDuYcu
i

X

j

i

rj

iiX

ji 
  

 (3.6)a 

 )
~

())(
~

)(( )2(

iZ

ji

X

j

i

rj

i UDuYuDap                                      

                      ))(
~

)(
~

()( j

j

XjZ

ji
UuDUDuYcu     (3.6)b 

Proof   

By operating 
j

u on (3.1) and using (1.6), we obtain (3.6)a. 

Multiplying (3.2)a with ),
~

( jZ

j
UDu  we get (3.6)b. 

Affine connexion 



D                         

Let us consider in nV  an affine connexion 


D satisfying  
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0))(())((  i

i

XiX

i
UYuDUDYu



                     (4.1)a                                                              

 and 

      
0))(())((  XFDYFD YX



                                 (4.1)b                                                       

It may be noted that all the results of the section above hold 

for 


D . In addition we have the following results: 

Theorem 4.1 

 In nV , we have 

  )( XDYDaXDYD YX

r

YX



        

                          iY

i

X

i
UXDuYDuc 



  )()(



          (4.2)a 

iY

i

YYY

r

Y
UXDcuXDXDXDaXD )()(



    

                                                                                       (4.2)b     

and 

 )( XDXDXDaXD
YYY

r

Y



             

  




 






  iY

i

iY

i

Y

i
UXDuUXDuXDuc )()()(



 (4.2)c 

Proof     

The equation (4.1)b is equivalent to 

 XDYDXDYD YXYX



                                       (4.3)  

Operating F in (4.3) and using (1.1), we get (4.2)a. Replacing 

Y by Y in (4.3) and using (1.1), (4.3), we get (4.2)b. Further, 

Operating F in (4.2)b and using (1.1),  

we get (4.2)c. 

Affine connexion 


D  

Let us consider in nV  an affine connexion 


D satisfying  

          
0))(())(( 



i

i

XiX

i
UYuDUDYu                (5.1)a                                             

and 

         
0))(())(( 



YFDYFD
XX                               (5.1)b                                                                                              

It may be noted that all the results of the section three hold for 


D . In addition we have the following results: 

Theorem 5.1 

In nV , we have  

iX

i

X

r

XXX UYDcuYDaYDYDYD )()(


  (5.2)a 

iU

i

U

r

UU UYDcuYDaYFDYD
jjjj

)()()(


  (5.2)b       

Proof 

(5.1)b is equivalent to  

YDYDYDYD
XXXX



                                           (5.3)                                               

Using (1.1) in (5.3), we get (5.2)a. Replacing X  by iU in 

(5.3), we get 

)()()( YDpUYcuYaDpYDYD
jjii U

j

ii

ir

U

j

iUU







     

                                                                                         (5.4) 

Replacing X by iU  in (5.2)b, we get  

YFDpYDYD
iii U

j

iUU )()(


                                        (5.5) 

From (5.4) and (5.5), we get  

)()()( YDpUYcuYaDpYFDp
jji U

j

ii

ir

U

j

iU

j

i







         

                                                                                         (5.6) 

Using (5.1)a in (5.6), we get (5.1)b.      

Theorem 5.2   

 In nV , we have  

 
iX

ir

XX

r

X

r

X
UYDucaYDYDaYDaYD )()((




 

  

















 



)()()()( YDUYDuYDaXcu
iii UjU

j

U

ri      (5.7) 

 Proof  

 Replacing X by X in (5.3) and using (1.1), (5.1), we get 

(5.7).                               
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