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 
Abstract—This article studies the related issues of the robustness 

and passiveness of neural networks with time-varying delays 

and leakage delays with parameter uncertainties.The white 

noise sequence that obeys the relevant Bernoulli distribution 

enters the system in randomly form.By choosing the appropriate 

LKFs, and using methods such as Wirtinger inequality and free 

weight matrix to improve the delay standard, and express it in 

the form of linear matrix inequality.Sufficient conditions are 

established to ensure the robust random stability and passivity 

of the neural network under consideration.Finally, a simulation 

example is given using the LMI toolbox to prove the validity and 

conservativeness of the standard proposed in this article. 

 
Index Terms—delayed neural networks, leakage delay, 

passivity,  uncertainties.  

 

I. INTRODUCTION 

 In the past few decades, scientists have been working hard 

to study neural networks, and have been applied in many 

fields, such as signal processing, pattern recognition and 

optimization problems.At the same time, it has been widely 

used in practical fields such as industrial control, clinical 

medicine, commercial bank loans, and risk warning.The most 

important thing in these applications is to ensure the stability 

of the system.In actual hardware, due to the limited switching 

speed and communication time of the amplifier, a time delay 

will inevitably be caused.In addition, the image signal 

contains many uncertain factors in the transmission process, 

such as system shock, signal confusion and so on.Similarly, 

parameter uncertainty is also an important reason for system 

delay and poor performance, such as poor external or 

operating environment and switching loss. Therefore, it is 

necessary and not to be ignored to consider the robustness of 

the delay system. Greatly improve the quality of the 

system.And many scholars have made research and 

contributions [1-4]. 

On the other hand, in many large-scale projects, the 

stability and passivity of the system are inseparable.Passivity 

analysis is based on stability analysis and is derived from the 

theory of system dissipation. The main physical meaning of 

passivity is to truly reflect the attenuation of system energy.In 

essence, the theory of system stability can be analyzed from 

the passivity, which is a comprehensive analysis method of 

the passivity.The concept of passivity has been integrated 
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with control theory for decades. After many scientists 

research and development, the concept of passivity has been 

widely used in fuzzy control, synchronization problems, 

network control and other fields.And it has become one of the 

valuable reference tools in the comprehensive research of 

control system.Analysis and research on the passivity of 

time-delay neural networks will also produce indispensable 

application value.Recently, passive research has provided 

some testing standards for the neural network theory of delay 

uncertainty [5-7]. 

In [8], several sufficient conditions are given to ensure the 

passivity of neural networks with discrete time-varying delays 

and distributed infinite delays.In [9,10,11], the authors 

studied the passivity of neural networks with discrete 

time-varying delay and distributed time-varying delay. In [12], 

the author obtained several sufficient conditions for neutral 

discrete and distributed time-delay neural networks to check 

the passivity of the neural network under 

con sideration.However, time delays may occur in a random 

manner, and sometimes delays that vary over time are 

indis tinguishable.In this case, the above methods may be 

difficult to apply, so it is necessary to further study the passive 

problem of neural networks with time-varying delay under the 

assumption of mild time-varying delay and small error. The 

authors in [13] study the passivity of neural networks with 

leakage delays. In [14], the passivity of uncertain neural 

networks with leakage delay and time-varying delay is further 

studied[19-23]. 

    The purpose of this paper is to study the robustness and 

passivity of neural networks with time-varying delays and 

uncertain parameters of leakage delays.Uncertainties of white 

noise sequences (ROUs) that obey some uncorrelated 

Bernoulli distributions appear in a random form and enter the 

system.By combining appropriate Lyapunov-Krasovskii 

functionals, Wirtinger’s inequality and free weight matrix 

methods to improve the delay criterion, the generalized 

activation function is realized.Sufficient conditions are 

established to ensure that the considered neural network has 

robust random stability and passivity, and reduces the 

conservativeness of the system.Examples are given using the 

LMI toolbox to prove the validity and conservativeness of the 

standards proposed in this article. 

 

II. PROBLEM ANALYSIS 

A. Problem formulation and preliminaries 

In this section, we consider the following time-delayed neural 
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networks with both leakage delay and randomly 

occurring uncertainties: 

 

 

 
 

where x1 = [x1(t)· · · xn(t)]
T
 ∈ Rn is the state vector of the 

system at time t, A = diag{−a1, ... , an} ∈ R
n×n

(ak > 0, k = 1 · 

· · , n) is the self-feedback matrix, W1
n×n 

 , W
n×n ∈ R

n×n
(i 

= 1, 2) is the connection weight matrix, ф(x(t)) = [ф1(x1(t)) · 

· · фn(xn(t))] 
T∈ R

n 
is the activation function of neurons, 

and u(t) = [u1(t) ... un(t)]
T
 ∈ Rn is the control input vector. The 

symbol δ and h(t) are the leakage delay and the time-varying 

continuous and bounded function in the delayed neural 

networks, satisfying 

 

0 ≤ τ(t) ≤ τ,   0 ≤ δ 

 

where and are constants.The sum of the theories used in 

this paper is summarized as: 

[K1] activation function фi(·)(i = 1, ..., n) in (1)is bounded 

and satisfy the following inequality 

 

 
 

where ℓ-i≥ 0 and ℓ+i > 0 are known real constants. Define 

L
-
 = diag{ℓ- 1, ℓ- 2 ,... , ℓ- n } and L

+ 
= diag{ℓ+1 , ℓ+2 , ... , ℓ+n } 

[K2] The real-valued matrix △A(t), △W(t),and △
W1(t)with appropriate dimensions represent the norm 

bounded pa rameter uncertainty of the following 

structure: 

 

[△A(t)  △W(t)  △W1(t)] = HF(t) [E1 E2 E3] 

 

where F(t) ∈ R
l×j

 is an unknown time-varying matrix 

satisfying 

 

F(t)
T 

F(t) ≤ I 

 

and H, E1, E2,and E3 are known constant matrices. 

[K3] In order to illustrate the phenomena of randomly 

occurring uncertainties,we introduce the stochastic 

variables α(t), β(t),and ν(t), which satisfy the mutually 

independent Bernoulli-distributed white sequences in 

order to explain the parameter uncertainty in the paper. 

The natural supposes about α(t), β(t) and ν(t) are as 

follows: 

 

Pr{α(t) = 1} = α, Pr{α(t) = 0} = 1-α 

Pr{β(t) = 1} = β, Pr{β(t) = 0} = 1-β 

Pr{υ(t) = 1} = υ, Pr{υ(t) = 0} = 1 -υ 

 

α, β,and υ are known constants,where α ∈ [0, 1], β ∈ 

[0, 1],and υ ∈ [0, 1]. 

First, the initial conditions related to system (1) are given 

x(s) = g(s), s ϵ[ ρ, 0]. 

where g(s) is bounded and continuously differential on [ ρ, 

0], ρ = maxδ, τ. Suppose x(t, g) is the state trajectory of 

system (1) From the above initial conditions and the 

corresponding trajectories under the initial conditions of x(t, 

0). 

Lemma 1 ([15]).For any matrix Q ∈ R
n
, Q > 0,a vector 

function ω : [d1, d2] → R
n
, such that the integrations 

concerned are well defined, the following holds: 

 

 
 

Lemma 2 ([16])For given matrices H, E and F with F
T 

F ≤ I 

and a scalar ε > 0, the following holds: 

 

HFE + (HFE)
T
 ≤ εHH

T
 + εT

 E
T
 E. 

 

Lemma 3 ([17]). For any n × n constant matrix R ∈  R, 

and R is a symmetric positive definite matrix,a scalar 

function h := h(t) > 0,and a vector valued function x : [ -h, 

0] → Rn , so the following related integrals can be easily 

defined and then the following inequality holds:  

 

 
 

Lemma 4 ([18]). System (1) is called globally passive if 

there exists a scalar γ > 0 such that 
 

 
 

for all tp ≥ 0 and for all x(t, 0). 

 

B.  Main results 

To facilitate reading, we set up the matrix: 

 

 
 

Theorem 1 Under satisfying (k1)-(k3), if the system (1) 

has a scalar γ > 0, it is passive in definition 1.six positive 

constants εi > 0(i = 1, 2, 3, 4, 5, 6), five symmetric 

positive definite matrices Pi(i = 1, 2, 3, 4, 5), four positive 

diagonal matrices D, H, R and S, and four matrices Qi(i = 1, 

2, 3, 4) such that the following LMI holds: 

 

    (2) 
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 in which 

Ω11 =- P1A-AP1+P2+δ
2
P3+P4- Q2A-AQ2- P5-L3Z+(ε1+

ε4)E
T

1 E1-L3R,Ω12 = P1- L1D+L2H-AQ
T

1 -Q2+P5, Ω22 = 

τ2
P5-Q1 -Q1

T
 , Ω33 =- L3S - L3Z, Ω77 = (ε2 + ε5)E

T
2 

E2 -R -Z, Ω88 = (ε3 + ε6)E
T

3 E3- S - Z. 

 

proof:From definition (K1) we can get 

 

 
 

Let D = diag(d1, d2, ..., dn), H = diag(h1, h2, ..., hn), and 

consider the following Lyapunov-Krasovskii functional: 

 

V(t) = V1(t) + V2(t) + V3(t) + V4(t)         (3) 

 

Where(4)-(7) 

 

 
 

Calculating the time derivative of Vi(t)(i = 1, 2, 3, 4), we 

obtain (8)-(11) 

 
 

From the system (1), we have (12) 
 

 
 

for positive diagonal matrices R > 0, Z > 0 and S > 0, we 

can get from assumption (K1) that [4]: (13)-(15) 

 

 

 
 

In addition,by assumption (K3) and Lemma 2, we get 

(16)-(21) 
 

 
 

it follows from (8)-(21) that 

 

   (22) 

 

where  
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in which 

Ξ11 =- P1A-P1+P2+δ
2
P3+P4 -Q2A- AQ2- P5 -L3Z+(ε1+

ε4)E
T

1 E1- L3R+ε-1 
4 Q2H1H

T
1 Q

T
2 +ε 

-1
5 Q2H2H

T
2 

Q
T

2 + ε- 1
 6 Q2H3H

T
3 Q

T
2  

Ξ12 = P1 - L1D + L2H - AQ
T

1 -Q2 + P5 

Ξ22 = τ2
P5 - Q1 -Q

T
1 +ε-1

 1 Q1H1H
T

1 Q
T

1 +ε-1
 2 

Q1H2H
T

2 Q
T

1 +ε-1
 3 Q1H3H

T
3 Q

T
1  

Ξ33 =- L3S - L3Z, Ξ77 = (ε2 +ε5)E
T

2 E2 - R - Z 

Ξ88 = (ε3 + ε6)E
T

3 E3- S - Z 

 

Using Schur complement lemma, it is easy to verify Π < 0 
and equivalence of Ω < 0  
 

    (23) 

 

From (23) and the definition of V(t), we can have  

 

 
 

For all tp ≥ 0 and all x(t, 0). According to Lemma 4, we 

know that the neural network (1) is globally passive.The  

proof is complete.  

When the system has no uncertainty, the system (1) 

becomes: 

 

 

                                   (24) 

 

When the system has no leakage delay, the system (1) 

becomes: 

 

 

     (25) 

  

When the system has no leakage delay and uncertainty, the 

system (1) becomes: 

 

 

                                   (26) 

 

The theory in this article is still valid in the above system 

 

C. Figures 

In this section, in order to illustrate the advantages of the 

results of the newly proposed passivity standard, we will  

give numerical examples commonly used in his papers.  

 

A.Example  

Consider NN(1) with time-varying delay and borrow the 

matrix parameters given below[14] 

 

 
 

ϕ(t) = 0.1(|x + 1| − |x −1|), τ(t) = 2 + 0.15sin(t), α = β = υ = 
0, δ = 0. 
 

 
Figure 1: State trajectory of the system of Example  

 

In order to solve the linear matrix inequality in Theorem 1 

and verify our reasoning, the method of MATLAB LMI  

Toolbox is used. Applying Theorem 1 in this article to this 

example, it can be concluded from Figure 1 that this article  

has obtained relatively stable parameter values. In this 

example, we get that the neural network with time-varying 

delay can still maintain its stability in a more general 

system.  

 

III. CONCLUSIONS 

This paper mainly discusses the problems related to the 

robustness and passivity of neural networks with time  

varying delays and uncertain leakage delays. In the case of 

uncertain random parameters, the leakage delay and time  

are solved. For the stability and passivity of the delayed 

neural network system, better methods are used to improve  

the conservativeness of the system, and examples are used 

to verify the validity and conservativeness of the standards  

proposed in this article. 
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