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 
Abstract— A chaotic gyro system to investigate the method for 

higher order sliding mode control design. The system is assumed 

to have uncertain parameters with known upper and lower 

bounds. We also design an optimal sliding surface for the sliding 

m o d e  c o n t r o l .  T h e  c o n t r o l  l a w  i s  d e s i g n e d  t o   

guarantee the existence of the sliding mode around the nonlinear 

surface Simulations are carried out to demonstrate the utility of 

the control method. 
Index Terms—Chaotic synchronization, Adaptive Sliding 

mode control, Finite time stability, Geometric homogeneity 

 

I. INTRODUCTION 

Chaotic systems are dynamical systems and its response 

exhibits a lot of specific characteristics, including an 

excessive sensitivity to the initial conditions, fractal 

properties of the motion in phase space, broad spectrums of 

Fourier transform. 

Today, chaos has been seen to have many useful 

applications in many engineering systems such as secure 

communications, optics, power converters, chemical and 

biological systems, neural networks and so on[1-3]. 

Synchronization in chaotic dynamic systems has received a 

great deal of interest due to its potential application in secure 

communications [4,5]. Several control methods have been 

successfully applied to chaotic motion control. For example 

Sliding mode control [6], adaptive control [7,8], backstepping 

control [9], etc. Many chaotic systems are inevitably affected 

by parameter variations and external disturbances. Sliding 

mode control (SMC) is a popular robust control approach for 

nonlinear systems operating under uncertainty conditions, as 

the controllers can be designed to compensate for the 

uncertainties or disturbances. In order to reduce the 

chattering, high order sliding mode (HOSM) approach has 

been recently proposed [10,11]. Keeping the main advantages 

of the standard sliding mode control, the chattering effect is 

reduced and finite-time convergence is provided. An 

interesting HOSM are proposed in [12] with the robustness of 

the system during the entire response. However, the 

knowledge of the upper bound of the system uncertainties is 

hard to be gotten accurately. In this paper, the approach in 

[12] is modified and applied Synchronization in chaotic 

dynamic systems, so that a continuous feedback is produced 

combining the robustness of high-order sliding modes and 

finite-time stabilization by continuous control. The aim of the 

modified method is to deal with unknown but bounded system 

uncertainties. The upper bounds of uncertainties are not 
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required to be known in advance. System stability is proven 

by using the Lyapunov theory. 

II. PRELIMINARIES AND MODEL FORMULATION 

The chaotic gyro system equation in the sleep position is 

described as[1-3]: 
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Where   is the angle with linear plus cubic damping and the 

term sinf t  is a harmonic parametric excitation. Defined 

the chaotic gyro syetem state variables as follows: 

1 2,x x   . Then, the system (1) can be transformed the 

convenient first-order form: 

1 2

2

3 2 1

2 1 1 2 2 13

1

(1 cos )
( sin )sin

sin

x x

x
x c x c x f t x

x
  




     

        (2)                           

Where The parameters are selected exactly 10, 1   , 

1 20.5, 0.05, 2, 35.5c c f    . The nonlinear gyro 

system exhibits the chaotic behavior for these parameter 

values. Chaotic responses of system(2) is shown in Fig. 

1without any control input. System (1) shows a chaotic 

behavior.  
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Fig. 1 Chaotic behavior of system x 

The nonlinear gyro system, as master, is considered by (2). To 

control the system effectively we propose to add a 

control-input u . By adding this input, the nonlinear gyro 

slave system is described as follows: 
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Where the
1 2( , )h y y R  is the system uncertainty and 

bounded.  It is satisfied as follows:
1 2( , )h y y H  . H is the 
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upper-bounds of uncertainties with unknown bound. 

The synchronization problem considered in this paper is to 

design a sliding mode controller u  based on finite time 

stabilization, which synchronize the states of the master 

nonlinear gyro system (1) and the slave system (2) in spite of 

the unknown nonlinear parameter vector. In other words, the 

aim of synchronization is to make as follows: 

lim 0
t
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Let us define the tracking error as: 
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Subtract (1) from (2) and the real error dynamics would be 

obtained as: 
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Where these nonlinear functions  are defined as follows:  
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This paper proposes a new adaptive sliding mode 

controller for chaotic gyro system to not only preserve the 

advantages of variable structure control but also reduce the 

chattering phenomenon and the synchronization of the states 

of slave chaotic systems converges to the states of master 

system. An adaptive higher order sliding mode control for 

chaotic gyro system is established in the next section. 

III. ADAPTIVE HOSMC FOR GYRO SYSTEM 

In practical terms, the resolution of the finite time 

stabilization is a delicate task which has generally been 

studied for homogeneous systems of negative degree with 

respect to a flow of a complete vector field. Indeed, for this 

kind of systems, finite time stability is equivalent to 

asymptotic stability [13-15].A constructive feedback control 

law for finite time stabilization of all-dimension chain of 

integrators without uncertainty has been proposed in [13]. 

Before designing our robust finite time controller, we 

introduce the algorithm given in [13] and show its problem in 

terms of robustness. 

A. Finite Time stabilization of an integrator chain system 

Consider the nominal system (6), which is represented by 

SISO independent integrator chains, is defined as follows: 
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Lemma 1: [13] Let 
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n
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   In order to design adaptive sliding mode controller for 

uncertain chaotic systems with unknown bounded 

uncertainties, there exist two major phases, First, an integral 

sliding manifold should be selected such that the sliding 

motion on the manifold has the desired properties. Second, an 

adaptive continuous control law should be determined such 

that the existence of the sliding mode can be guaranteed 

without knowing the upper-bounds of uncertainties from 

lemma 1. 

B. Design of Adaptive HOSMC for Gyro system 

Define the integral sliding manifold for system (8): 
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where the construction of control law 
nom

 is given in 

Lemma 1. In order to stabilize in finite time system (6) with 

 uncertainties, we define the following control law: 
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The adaptive law is designed as follows: 

1ˆ= s


                                                                        (14) 

Where parameter 0   is the gain of adaptation 

determining the adaptive process. 

Theorem 1 Consider the error system (6) with parametric 

uncertain and disturbances. If the controller is designed as  

(11)-(13). The positive adaptive feedback gains are updated 

according to the adaptation law (14), and can ensures the 

establishment error state trajectory converges to the sliding 

manifold (9) 0s   in finite time.
  

 
Proof : The Lyapunov candidate function is selected to be: 
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IV. SIMULATION 

 In this section, the presented control algorithm is demon- 

strateed. In these numerical simulations, the fourth-order 

Runge–Kutta method is used to solve Lur’e-like system 

with time step size 0.001 in Matlab/Simulink. The parameters 

are selected as follow:                                                          

     A perturbation 
10.5sin(2 ) 10sin( )y t   （）  is consid- 

ered, where 3n 
3

3

4
  , 

2

3

5
  , 1

1

2
  ,

1 3k  ,
2 2.5k  , 

3 1k  =1.5 . The simulation results are illustrated in Fig. 2. 

From the figure, we can see that the synchronization error 

1e ,
2e ,

3e will converge to zero in the finite time. Figs.3 and 4 

show the control input and the corresponding sliding manifold 

S(t). In particular, it is worthy of note that, no information of 

upper-bounds of uncertainties is used in our control design. 

Estimate value of adaptive gain Ĝ  is described in Fig.5. The 

adaptation gain parameter and initial value are set as 2q   

and ˆ (0) 0G  . Fig.5 shows that the adaptation parameter 

t e n d s  t o  a  c o n s t a n t  v a l u e .  
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Fig. 2 Time responses of error states 
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Fig.3 Time response of control input u(t). 
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Fig.4 Time response of the corresponding sliding 

manifold S(t) 
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Fig.5 Time response of parameter estimation value G 

V. CONCLUSION 

This work proposes an adaptive SMC controller for 

nonlinear systems with parametric uncertainties. This method 

can be viewed as the finite time stabilization based on 
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geometric homogeneity and integral sliding mode control. 

The knowledge of the upper bound of the system uncertainties 

is not prior required. Simulation results demonstrate that the 

proposed control method is effective. 
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