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Abstract— This paper presents a type-2 quantum fuzzy logic 

controller (T2QFLC) for robot manipulators with unstructured 

dynamical uncertainty that is customized using quantum 

evolutionary algorithm. In order to effectively construct type-2 

fuzzy logic controllers, quantum genetic algorithms are used to 

simultaneously design type-2 fuzzy sets and rule sets. 

Traditional fuzzy logic controllers (FLCs), also known as type-1 

fuzzy logic systems employing type-1 fuzzy sets, struggle to 

describe and reduce the impact of uncertainties that are present 

in many real-time applications. As a result, type-2 FLC has 

recently been suggested. A collection of several embedded type-1 

FLCs can be thought of as the type-2 FLC. The type-2 FLC 

design method now in use, however, is not automated and relies 

on the heuristic expertise of seasoned operators. Our research is 

aimed at automating the design process. The type-2 FLCs that 

have emerged can deal with a lot of uncertainty and perform 

better for mobile robots. Additionally, it has outperformed both 

the conventionally constructed type-2 FLCs and their type-1 

equivalents. 

 

 
Index Terms— Interval Type-2 FLC, Mobile Robot, Interval 

Type-2 fuzzy sets, Optimization, Quantum genetic Algorithms.   

 

I. INTRODUCTION 

   Fundamental representation and processing frameworks for 

linguistic data, fuzzy logic systems (FLS) have tools to handle 

uncertainty and imprecision. With such exceptional qualities, 

FLS has been effectively used in a wide range of applications, 

including control [20], classification [21], and modeling 

problems [22]–[24]. A set of fuzzy rules and the related 

membership functions (MFs) that translate inputs into outputs 

make up a fuzzy model.  

Either human specialists give fuzzy rules and MFs, or they 

are learnt from sample data. It is difficult to understand many 

decision-making and problem-solving jobs statistically. 

However, people often achieve success by relying on 

incomplete rather than perfect knowledge.  
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   It may be simple and efficient to build fuzzy logic 

controllers (FLCs) with the right expert knowledge base 

(KB). However, without such a knowledgeable KB, designing 

FLCs can be unpleasant since it relies more on trial and error 

than a planned strategy. 

    Due to its natural biological evolution process and ability 

to quickly and effectively search a vast and complicated 

solution space, evolutionary algorithms (EA) can be utilized 

to get over the drawbacks of the trial-and-error approach. 

Therefore, EA may be used as a strong search technique to 

carry out activities including creating a fuzzy rule base (RB), 

optimizing a fuzzy RB, creating MFs, and tweaking the kinds 

of MFs. 

    The most crucial challenge, for the majority of fuzzy logic 

control issues, is to identify the parameters that characterize 

the type-2 MFs. This makes it possible to transform type-2 

MFs optimization problems into parameter optimization 

issues. These parameters are often based on the expert KB 

that is developed automatically or heuristically by seasoned 

control engineers. Numerous techniques have been employed 

to enhance the behavior of parameter optimization problems 

as well as the choice and construction of fuzzy rules, 

including genetic algorithms (GAs) and neural networks 

(NNs). 

    Mendel [1] and Hagras [2] have demonstrated that type-1 

fuzzy logic systems (FLSs) would not be able to simulate or 

limit the impact of uncertainties that are prevalent in 

real-world applications. One constraint is that in logic where 

the membership grade for each input is a crisp value, a type-1 

fuzzy set is guaranteed. The uncertainties may be managed, 

however, by interval type-2 FLCs (which employ interval 

type-2 fuzzy sets, identified by fuzzy MFs). 

    Martnez [3] utilized GA to optimize type-2 FLC. He used 

GA to create FLC for the disturbed autonomous wheeled 

mobile robot's control. To learn the parameters of the fuzzy 

system for intelligent management of nonlinear dynamic 

plants, Melin and Castillo [4] suggested a technique based on 

type-2 fuzzy sets and neural networks termed neuro-fuzzy. 

Tan [5] optimized FLC settings using GA. He employed 

mixed (type-1 and type-2) fuzzy sets for real-time control in 

his suggested method. 

    To create an ideal interval type-2 FLC in this paper, 

quantum optimization is used. QGA is used to adjust type-2 

fuzzy sets and rule sets for developing interval type-2 FLCs. 

QGA is a self-learning adaptive mechanism. It is discovered 
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that QGA automatically adjusts the best MFs settings and 

generates the ideal number of fuzzy rules. To compare how 

the two types of fuzzy logic controllers react to uncertainty, 

we simulated type-1 and type-2 fuzzy logic controllers. 

The remainder of the paper is structured as follows: An 

introduction to type-2 fuzzy sets and FLC is given in Section 

II. The issue description as well as the kinematic and dynamic 

models of the mobile robot are described in Section III.  The 

type-2 Quantum Inspired Evolutionary Fuzzy Logic 

Controller (T2QIEFLC), which is our method, is introduced 

in Section IV. Real Coded Quantum Evolutionary Algorithm 

and RCQEA Procedure is discussed in Section V and VI 

respectively. Section VII presents a simulation analysis of the 

mobile robot utilizing the controller as described in Section 

IV. Finally, section VIII. discusses conclusion and some 

future works. 

II. TYPE-2 FUZZY SETS AND FLC 

Prof. Zadeh [6] developed the idea of a type-2 fuzzy set in 

1975. Membership function defines a type-2 fuzzy set. 

Instead of being a point in the closed interval [0, 1], the fuzzy 

grade of that is a fuzzy set in that range. A type-2 membership 

function [7], indicated by the symbol, characterizes a type-2 

fuzzy set, where and, that is,  

[0,1]}J      X  |u))(x,u),{((x, xux
A

~

~  A  

    Xx Ju A
x

uxuxA ]1,0[J    ),/(),( x where  denotes 

union over all admissible x and u. xJ
is called primary 

membership of x, where ]1,0[xJ for Xx  [7]. The 

footprint of uncertainty (FOU) [7] is a limited area that 

contains the uncertainty in the primary memberships of a 

type-2 fuzzy collection. All primary memberships are unified 

under it [7]. 

 
 

Figure 1. An Interval Gaussian type-2 fuzzy set where σL and 

σU are minimum and maximum resultant widths respectively. 

A. Type-2 FLC 

 A type-2 FLC is made up of five parts, as shown in Fig. 2. 

These parts are fuzzifier, defuzzifier, type-reducer, 

knowledge base (KB) and fuzzy inference engine. 

B. Fuzzifier 

The input is fuzzified in fuzzy form using a fuzzification 

operator because it is in crisp normalized values. A crisp input 

vector with p inputs is translated into input fuzzy sets by the 

fuzzifier [8][9]. However, because the singleton fuzzification 

approach is quick to compute and ideal for mobile real-time 

operation, we have utilized it here. In the singleton fuzzifier, 

fuzzy set A has only a single point of non-zero membership 

with support ix , where 1),(~

A
ux for ixx   and 

0),(~

A
ux for ixx  which input measurement with x is a 

perfect crisp. 

 

 

C. Rule Base 

The antecedents and consequents will be represented as 

interval type-2 fuzzy sets, but the rules will stay the same as in 

type-1 FLC [9]. The FLC under discussion employs fuzzy 

implication and compositional rules of inference for 

approximation reasoning, similar to the majority of FLCs 

[10]. Consider the case where we need to design a type-2 FLC 

mobile robot having p inputs pp XxXx  ,,.........11  and c 

outputs cc YyYy  ,.....,11  with ith fuzzy rule of the form:                                          
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i GG are the antecedent and 

consequent MFs associated with the linguistic p input 

variables and c output variables, respectively, and M is the 

number of rules in the rule base. 

D. Fuzzy Inference Engine 

    Based on the fuzzy logic principle, the fuzzy inference 

engine mixes rules and provides a mapping from type-2 fuzzy 

sets in the input universe of discourse to type-2 fuzzy sets in 

the output universe of discourse. The output of the ith type-2 

rule is as follows: 
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Where  denotes meet operation. The extended sup-star 

composition is used to mix membership grades in the input 
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                             Figure 2. A type-2 FLC 

 

http://www.ijerm.com/


                                                    International Journal of Engineering Research And Management (IJERM) 

ISSN : 2349- 2058, Volume-09, Issue-08, August 2022 
 

                                                                                              3                                                                                    www.ijerm.com  

 

and output type-2 fuzzy sets, and the Join operation is used to 

combine several rules. In [11–12], they are defined and 

discussed in further detail. 

E. Type Reduction 

When an interval type-2 fuzzy set is converted to an 

interval-valued type-1 fuzzy set, type-reduction has taken 

place. These type reduced sets are then defuzzified to produce 

clear outputs. Due to its fair processing complexity, centroid 

type reduction has been used in this work. For the centroid 

type reduction process, firstly combines the output type-2 

fuzzy sets using union [4] (minimum t-norm), M
l

lB1

~~

B  , 

as:  
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is the secondary membership function for the 

lth rule and it depends on join and meet operation. The 

centroid type reduction calculates the centroid of 

~

B .The type 
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where i=1,….,N. To compute this process, at first y domain is 

discretized into N points and then 
iyJ  is discretized into Ti 

(i=0,1,…N) points. Total number of computations is  
N
i iT1 . 

F. Defuzzification 

After the type-reduction stage, defuzzify the type reduced 

interval set )(

xyc , determined by its left most ly

and right 

most point ky
 using the average of of ly and ky . Hence the 

defuzzified crisp output is 

2
)( rl yy

xY



  

III. MATHEMATICAL FORMULATION OF THE PROBLEM 

A mobile robot has to move from an initial position to the 

target (dock) by avoiding collisions with a single stationary 

obstacle in optimal path. Depending on the circumstances, it 

could have to proceed in a straight line or make a curve to 

create a path that avoids collisions. The issue is adapted from 

[13]. Figure 3 shows the simulated geometry for the robot and 

loading dock in a schematic manner. In this workspace, a 

mobile robot is traveling amid a single fixed barrier. 

Independent of the robot's starting position, the control 

system has to progressively identify a route to the loading 

dock. The path planning of the mobile robot is determined by 

the three input variables x, y and Φ, (considered as a point 

mass), where x and y are the cartesian co-ordinates of the 

mobile robot and Φ is the robot direction angle relative to the 

horizontal axis x. The output variable is the control steering 

signal θ. As a first investigation, let us assume that there exists 

enough clearance between the robot, the walls and the 

obstacle in the workspace so that we can ignore the y-position 

co-ordinate of the robot. The co-ordinate y will be 

re-introduced into the discussion shortly. The state spaces of 

two inputs are 
00 295115  

& 1000  x , and one output 

θ within [-400, 400]. At every stage, the simulated mobile 

robot only moved forward until it hits the border of the 

loading dock. The final states 
),( ffx 

will be equal or close 

to (10, 900).  The robot kinematics model is described by the  

 

 
     

     Figure 3. Mobile Robot and loading dock illustration. 

following dynamic equations. 
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Where l is the length of the robot, we assume l=4. Eq. (1) will 

be used to derive the next state when present state and control 

are given.  

     A very nonlinear difficult situation is what this experiment 

exemplifies. Here, type-1 FLCs known as type-1 genetic 

fuzzy logic controllers (T1GFLC) and type-2 genetic fuzzy 

logic controllers (T2GFLC) are compared for their 

performance. 

IV. HYBRID Q-FUZZY OPTIMIZATION OF THE TYPE-2 FLCS 

 Based on the idea of quantum computing, QIEA is a 

probability optimization method. The smallest piece of 

information in quantum computing is referred to as a Q-bit. A 

Q-bit can be represented as    

Where α2 +β2 =1. |α|2 indicates the probability of finding the 

Q-bit in “0” state and |β|2 indicates the probability of finding 

the Q-bit in “1” state. A Q-bit may be in “1” state, in “0” state 

or in a linear superposition of the two states. 

A Q-bit individual as a string of m Q-bits is defined as  

 

Where |αi|2 +|βi|2 =1, i = 1, 2, 3…..m. A Q-gate which is a 

quantum mutation gate is used to speed up the convergence. It 

is defined as: 
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where Δθi, i = 1, 2, 3…., m, is the rotation angle of a Q-bit 

towards the “0” state or “1” state depending on its sign. After 

applying Q-gate, the Q-bit should satisfy the normalization 

condition |α΄|2 + |β΄|2 = 1, where |α΄|2 and |β΄|2 are the values of 

updated Q-bit.    

Figure 4 illustrates a quantum-type-2 fuzzy system, which 

employs QIEA to establish type-2 fuzzy sets and fuzzy 

control rules. In this paper, we used QIEA to optimize the 

Type-2 FLC MFs' parameters, and we considered applying 

Type-2 MFs with Gaussian Intervals to each of our three 

variables. For the selection and definition of the RB of type-2 

FLC, we simultaneously used QIEA. 

 
Figure 4. Integration of type-2 FLCs and QEA. 

 

Fuzzy rules and MFs are created using two input variables x 

and one output variable. These variables are therefore 

encoded on a QEA chromosome. There are 5, 7, and 7 

regions, respectively, in the domains for x, and.  The 

following Table I lists the linguistic words (MFs) that are used 

to characterize each of the input and output variables. 

            Table I. Definition of linguistic variables. 

 

LE – Left End RC – Right 

Center 

LC – Left Center RE – Right 

End 

CE – Center  
 

 

LB – Left Below RV – Right 

Vertical 

LU –  Left Upper RB – Right 

Below 

LV –Left Vertical RU – Right 

Upper 

VE – Vertical  
 

 

NL – Negative 

Large 

PS – Positive Small 

NM – Negative 

Medium 

PM – Positive 

Medium 

NS – Negative 

Small 

PL – Positive 

Large 

ZE – Zero  
 

 

The rule base contains total 35 rules. Each rule includes the 

real value of x, Φ, and θ. Each variable (input and output) is 

divided into three parts: begin (b), center (c), and end (e). So 

the rule base looks like:  

b11 c11 e11 b12 c12 e12 b13 c13 e13 

b21 c21 e21 b22 c22 e22 b23 c23 e23 

∙ 

∙ 

∙ 

∙ 

∙ 

∙ 

∙ 

∙ 

∙ 

bn1 cn1 en1 bn2 cn2 en2 bn3 cn3 en3 

    
                    Input     Input      Output  

                                               

To minimize the length of each rule, only the center (c) and 

width (w) is used. Using c and w, begin (b) and width (w) can 

be easily calculated: 

Begin= center-width 

End = center+width 

So, each rule is represented as follows: 

C1W1 C2W2 C3W3 

         

                       Input       Input       Output  

An important characteristic of fuzzy models, FM, is the 

partitioning of the input and output space of system variables 

(input, output) into fuzzy regions using fuzzy sets [14]. The 

range of  is divided into five non-uniform intervals [0, 32.5], 

[32.5, 47.5], [47.5, 52.5], [52.5, 67.5], and [67.5, 100] and 

they are represented by five linguistic variables LE, LC, CE, 

RC and RE respectively. The range of   is divided into seven 

non-uniform regions [-115, -27.5], [-27.5, 46], [46, 86.5], 

[86.5, 98.5] , [98.5, 146], [146,   216], [216, 295] and  then 

they are represented by seven linguistic variables NL, NM, 

NS, ZE, PS, PM, and PL respectively. Similarly seven 

divided regions of the range of θ are [-40, -28], [-28, -12.5], 

[-12.5, -2.5], [-2.5, 2.5], [2.5, 12.5], [12.5, 28], [28, 40]. In 

this study, five and seven gaussian type-2 fuzzy sets were used 

to partition the input spaces x and  respectively and seven 

gaussian type-2 fuzzy sets for output spaces. The rule base, 

then, contains thirty-five (7 x 5) rules to account for every 

possible combination of input fuzzy sets. The fuzzy control if 

then rules are of the form: If x is ({LE, LC, CE, RC, RE}) and 

x, Φ is ({NL, NM, NS, ZE, PS, PM, PL}) then   is ({NB, 

NM, NS, ZE, PS, PM, PB}), output is one of the type-2 fuzzy 

sets used to partition the output space. 35 genes are used to 

represent the rule set. Therefore, we need to encode a total of 

(57+35) parameters for each individual of our population. In 

Inputs and their ranges Outputs and their ranges 

Divide input ranges in 
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Knowledge Base 
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order to make this encoding schema, we design a chromosome 

of 92consecutive real genes.  

V. REAL CODED QUANTUM EVOLUTIONARY ALGORITHM 

There are various types of QIEA such as Quantum 

Evolutionary Algorithm (QEA), Real Coded Quantum 

Evolutionary Algorithm (RCQEA). In this paper, RCQEA is 

used as QIEA.  

A. Representation 

Each individual is represented by real coded triploid 

chromosome which can be defined as follows: 

                                  

Where (Ri αi  βi)T, i =1, 2…. n is the ith  allele of real coded 

triploid chromosome and   is the ith rule in fuzzy rule base. 

(αi, βi)T   is a pair of probability amplitudes of one qubit and 

satisfies normalization condition |α|2+|β|2 = 1, n is the length of 

real-coded triploid chromosome which is 35. 

B. Mutation 

Gaussian Mutation operator is applied to update population at 

each generation. The   allele is randomly selected from  

and the centers(c) of the input-output variables in the rule of 

the selected allele are changed as follows: 

 =  + (  ) N (0, ( 2)           

Where  and  are respectively upper and lower 

bound of the regions in which  lies.  may not be 

within the limit so it is clipped to keep it within the region of  

. The center of  is considered always the whole range 

of .  N (0, ( 2) denotes the Gaussian distribution of mean 

0 and variance ( )2. The value of variance ( 2 is either 

 or /5 based on “Fine Search” or “Coarse 

Search” to be implemented []. The width ( ) of each center 

is updated as follows: 

 

Where  is the uniformly distributed random number in the 

range [0, 1]. The pair probability amplitudes of the  allele 

is updated by the Quantum Rotation Gate (QRG) as follows: 

=         

Here   is rotation angle of Q-bit and it is calculated as 

follows, 

      = sgn ( )  exp                

Where  is the initial rotation angle,   is the scale 

parameter. These control the rotation angle and increase the 

speed of convergence, the sign sgn (.) determines the 

direction of the rotation angle.  

C. Discrete Crossover (DC) and Elitism  

DC is performed repeatedly after a fixed number of 

generations and it expands the search space to find the 

suitable steering angle  with respect to input variables to 

backing up the truck with minimized trajectory error (fitness 

value). The elitism technique is used to ensure that the rule 

base with best fitness value will not be lost.  

VI. RCQEA PROCEDURE 

A. Initialization 

A Population of N individuals = {   } is 

initialized by randomly chosen real numbers, where  is an 

individual defined in (). 

B. Decode and evaluation 

At each generation t RCQEA maintains a population of 

real-coded triploid chromosome. A rule  in  contains 

six values, center (C) and width for each of three variables 

(   and ). Decode the every chromosome into RB and 

MFs for the construction of type-2 FLC and FLC is executed 

on the truck until it reaches the goal position or near to the 

goal position. Each potential solution (FLC) is evaluated and 

assigned a fitness value according to its performance to the 

problem. The fitness value for each chromosome is defined as 

the trajectory error. 

C. Recombination 

Apply mutation and crossover operator to chromosomes and 

generate new chromosomes as well as new generation. Check 

the termination condition and go to step 2 if the termination 

condition is true otherwise go to step 4. 

D. Stop 

The best fitted chromosome is kept and solution has been 

achieved. 

VII. EXPERIMENTAL RESULT AND PERFORMANCE 

COMPARISON 

 We conducted a number of tests in our simulated arena where 

the controller was evolved in order to assess the proposed 

system's correctness. Table II displays the ideal MF means 

and standard deviations for x, and y. The produced optimum 

rule base is also displayed in Table II after being converted 

from optimal parameter to linguistic form. Fig. 8 displays 

fitness vs. generations required in this paper and tuned 

Gaussian Type-2 Fuzzy sets are also shown in Fig. 7. Table 
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III. Shows FAM- bank matrix for the fuzzy backing up a 

truck. The two antecedents and one consequent type-2 MF of 

T2GFLC are shown in Figures 5 and 6. The performance 

comparison between T1GFLC (type-1) and T2GFLC is 

shown in Figure 9. The timeframes it takes the mobile robot to 

get at the desired spot under 5 distinct beginning 

circumstances are shown in Figure 9, and their trajectories are 

depicted in Figure 5 and 6 respectively. The five starting 

conditions for with their stages are shown in Table IV. It is 

clear from Figures 5, 6, and Table IV. that the performances 

of T2GFLC are superior to those of T1GFLC. By adopting 

interval T2FLC, the objective position may be reached in less 

time and with smoother trajectory (shown in Fig.6).  

 

 

 

A. Fuzzy Control Rules 

We have obtained the fuzzy control rules (shown in table II) 

from the best chromosomes of QGA after 100 generations. 

Fig. 8 depicts a visual representation of fitness vs. generations 

 

 Table III. FAM-bank matrix for the fuzzy backing up a truck. 

 

θ 
 

NL NM NS ZE PS PM PL 

 

 

x 

LE 1ZE 2PB 3PM 4NM 5NB 6NB 7NM 

LC 8PM 9PS 10NS 11NM 12NB 13PB 14NB 

CE 15PS 

16P

M 

17P

M 

18ZE 19NS 

20N

M 

21NS 

RC 22PB 23PB 24NS 25PM 26ZE 27NS 

28N

M 

RI 29PB 30PB 

31P

M 

32PB 33PS 34ZE 35ZE 

 

 

 

 

 

 

 

 

 

     Table IV. Starting condition with their stages. 

 
Case 1 2 3 4 5 

x y 15 15 15 30 30 50 65 25 75 50 

 600 -300 150 250 -450 

T1FLC 40 56 34 31 45 

T2FLC 28 40 27 22 38 

 
Figure. 5 Show robot trajectories avoiding stationary obstacle 

(cross-hatched circle) via T1QFLC. 

 

 
Figure 6. Show via interval T2QFLC, all from 5    different 

initial conditions. 

 

Table II. Optimal Means and Standard Deviation of Interval T2QFLC Antecedents MFs of x, y and 
consequents MFs of θ. 

 

 
 

MFs of x 

 
LE LC CE RC RE 

m σU σL m σU σL m σU σL M σU σL m σU σL 

10.31 34.12 21.16 30.7 31.86 26.81 51.2 20.14 10.25 61.69 41.81 29.3 94.21 57.31 64.13 

MFS  OF  y     

NL NM NS ZE PS PM PL 

m σU σL m σU σL m σU σL m σU σL M σU σL m σU σL m σU σL 

-90.81 94.17 84.21 2.16 189.5 171.3 75.5 135.9 92.60 90.8 122.1 98.12 145.1 74.28 51.2 182.3 83.00 44.28 252.4 135.4 96.4 

MFs of ϴ 

NB NM NS ZE PS PM PB 

m σ1 σ2 m σ1 σ2 m σ1 σ2 m σ1 σ2 M σ1 σ2 m σ1 σ2 m σ1 σ2 

-38.16 22.15 16.13 -25.22 22.86 11.16 -8.59 25.13 20.71 2.15 17.17 13.14 12.28 16.15 8.16 24.16 27.14 16.39 36.17 19.13 8.16 
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Figure 8. Fitness vs. Generations. 

 

 

               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Shows the results of trajectory errors in T1QFLC 

and T2QFLC. 

 

  

(a) LE of x (b) CE of x 

 
 

(c) NL of y (d) PM of y 

  

(e) NB of  θ (f) PS of θ 

Figure 7: Tuned Gaussian Type-2 Fuzzy sets   
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VIII. CONCLUSION 

This paper has demonstrated the potential of evolving the 

type-2 MFs and rule set parameters of interval type-2 FLCs 

utilizing a QGA-based architecture. We have demonstrated 

that an integrated FLCs and hybrid GAs architecture is a 

self-learning adaptive approach which is able to develop a 

reliable fuzzy control rules and produce optimal MFs 

parameters without any priori information intended for 

mobile robot control in real-world scenarios. Evolutionary 

type-2 FLCs may solve control issues in domains where there 

is no previous information, such as in the case of mobile 

robots. In compared to type-1 FLCs, the genetically 

developed type-2 FLCs has better control performance 

(T1GFLC). 

The following are the ideas for possible follow-up for this 

paper: This research project will be expanded to include 

intelligent control of mobile robots, robotic arm control in the 

presence of moving obstacles, and path planning for multiple 

mobile robots in the presence of numerous impediments that 

are either stationary or moving in the workspace. 

 

 

REFERENCES 

[1] H. A. Hagras, “A hierarchical type-2 fuzzy logic control 

architecture for autonomous mobile robots,” IEEE Trans. on 

Fuzzy Systems vol.12,  no.4, pp.524–539, 2004. 

[2]  J.M. Mendel,“Rule-Based Fuzzy Logic Systems: Introduction 

and New Directions,” Prentice-Hall, Englewood Cliffs, NJ, 2001. 

[3] R. Martínez, O. Castillo, L. T. Aguilar, “Optimization of interval 

type-2 fuzzy logic controllers for a perturbed autonomous 

wheeled mobile robot using genetic algorithms,” Information 

Sciences, pp.2158–2174, 2009 

[4] P.Melinand O.Castillo,“Intelligent control of nonlinear dynamic 

plants using type-2 fuzzy logic and neural networks,” Proc. of 

NAFIPS, pp. 22–27, 2002. 

[5] D. W. W. W. Tan, “A simplified type-2 fuzzy logic controller for 

real-time control,” ISA Trans., vol.45, pp.503-516, 2006. 

[6] L. A. Zadeh, “The concept of a linguistic variable and its 

application to approximate reasoning-I,” Inform. Sci., vol.8, 

pp.199-249, 1975. 

[7] J. Mendel and R. John, “Type-2 fuzzy sets made simple,” IEEE 

Trans. Fuzzy Syst., vol. 10, pp. 117–127, Apr. 2002. 

[8] Q. Liang, N. Karnik, and J. Mendel, “Connection admission 

control in ATM networks using survey-based type-2 fuzzy logic 

systems,” IEEE Trans. Syst., Man, Cybern. C, vol. 30, pp. 

329–339, Aug. 2000. 

[9] J. Mendel, “Uncertain Rule-Based Fuzzy Logic Systems: 

Introduction and New Directions,” Upper Saddle River, NJ: 

Prentice-Hall, 2001 

[10] J. M. Jou, P. Y. Chen, and S. F.Yang, “An Adaptive Fuzzy Logic 

Controller: Its VLSI Architecture and Applications,” IEEE Trans. 

on Very Large Scale Integration (VLSI) Systems, vol.8, no.1, 

Feb. 2000. 

[11] N. N. Karnik and J. M. Mendel, “Operations on type-2 fuzzy 

sets,” Fuzzy Sets and Systems, vol.122, pp. 327–348, 2001. 

[12] M. Mizumoto and K. Tanaka, “Some Properties of fuzzy sets of 

type-2,” Infom.Control, vol. 31 pp.312-340, 1976. 

[13] M. Mohammadian andR. J. Stonier, “Fuzzy logic and genetic 

algorithms for intelligent control and obstacle avoidance,” in 

Complex Systems: Mechanism of Adaptation, R. J. Stonier and 

X. H. Yu, Eds. Amsterdam: IOS Press, 1994, pp. 149-156. 

[14] L. X. Wang, “Adaptive Fuzzy systems and control: Design and 

Stability Analysis,” PTR Prentice-Hall, Englewood cliffs, NJ. 

1994. 

[15] R. I. John, “ Embeded interval valued type-2 fuzzy sets,” in Proc. 

FUZZ-IEEE Int. Conf., pp. 1316-1319, May 2002.  

[16] J.M. Mendel, “Uncertain rule-based fuzzy logic systems: 

introduction and new directions,” Prentice Hall, NJ. 2001. 

[17] B. Kosko . “Neural networks and fuzzy Systems: A Dynamical 

Systems Approach to Machine Intelligence,” Englewood Cliffs, 

NJ: Prentice-Hall, 1992. 

[18] R.I. John and C. Czarnecki, “A type 2 adaptive fuzzy inferencing 

system,” in Proc. IEEE Systems, Man and Cybernetics, 

pp.2068-2073, 1998. 

[19] Q. Liang and J.M. Mendel, “Interval type-2 logic systems: theory 

and design,” IEEE Trans. on Fuzzy Syst., vol. 8 no.5, 

pp.535-550, Oct. 2000. 

[20] Pierre Guillemin, “Fuzzy Logic Applied to Motor Control,” IEEE 

Transaction on Industry application, vol. 31, no.1, 1996. 

[21] Shang-Ming Zhou and John Q. Gan, “Constructing 

L2-SVM-Based Fuzzy Classifiers in High Dimensional Space 

with Automatic Model Selection and Fuzzy Rule Ranking,” 

IEEE Transaction on Fuzzy Syst., vol. 15, no. 3, June 2007. 

[22] Z. Liu and H.X. Li, “A probabilistic fuzzy logic system for 

modelling and control,” IEEE Trans. Fuzzy Syst., vol. 13, pp. 

848–859, 2005. 

[23] L.X. Wang, “Stable adaptive fuzzy control of nonlinear systems,” 

IEEE Trans. Fuzzy Syst., vol. 1, pp. 146–155, 1993. 

[24] I-Hsum Li, Lian-Wang Lee, “A hierarchical structure of 

observer-based adaptive fuzzy-neural controller for MIMO 

systems,” Fuzzy Sets and Systems, vol.185, issue 1, pp. 52–82, 

2011.  
 

http://www.ijerm.com/

