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Abstract. -- As research into tumours continues, a large number 

of targeted drugs for the treatment of tumours are being 

devised. However, most of the drugs currently available for 

cancer treatment only target a single type of cancer, and 

single-use drugs have low drug utilisation and are prone to drug 

resistance. Combinations can be an excellent way to address 

these issues with single medicines, but because there are so 

many different kinds of anti-cancer medications on the market, 

it is inevitable that using just experimental approaches to screen 

combinations will be ineffective. Deep learning techniques are 

required to forecast the effects of combination medications, 

which are subsequently tested experimentally, in order to solve 

this issue. In this paper, we propose to use a model of 

transformer arithmetic to predict the effect of drug 

combinations on cell lines. After being fed into a multi-layer 

feed-forward neural network, information on the drug's 

molecular structure and the proteomics of the cancer cell line is 

used as input to the model, and this feature information is then 

used as input to the TRANSFORMER to predict the action 

fraction of the drug on a particular cancer cell line. And our 

model is compared with other machine learning and deep 

learning models. On the independent test set, our model 

outperforms the other models. 

 
Index Terms—Drug combination synergies, transformer, 

cancer, attention mechanism, deep learning 
 

 

I. INTRODUCTION 

The right combination of drugs can improve the efficacy of 
drugs, reduce their toxic effects and reduce drug resistance[1]. 
In some practical cases, the combination of older drugs has 
been effective in the treatment of multiple diseases. For 
example, in the treatment of triple-negative breast cancer, 
lapatinib or rapamycin alone have little effect, but their 
combination significantly increases the rate of apoptosis in 
triple-negative breast cancer cells to some extent[2]. 

It is clearly impossible to screen the effects of 
combinations of drugs one by one by experimental means, 
and with a large number of drugs and a large number of 
cancer cell lines, these would correspond to tens of millions 
of combinations, and it would be impossible to complete all 
of them. Therefore, corresponding computational models 
need to be proposed to solve these problems[3-4]. 

A large number of models have been proposed to 
accomplish the corresponding task[5]. Among them, Iwata et 
al used a logistic regression algorithm to predict effective 
drug combinations from target protein information as well as 
ACT drug coding, and to reduce overfitting by L1 
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regularisation[6]. The PEA model predicts the effect of a 
combination of drugs by probability. Given a pair of drugs, 
PEA calculates the similarity characteristics of the drugs and 
uses a Bayesian network to calculate the likelihood ratio to 
obtain the similarity in probability of a known combination of 
drugs[7]. The SyDRa model predicts drug combinations by 
means of three random forest models[8]. These early machine 
learning models, though typically simpler, less 
computationally intensive, and with some interpretability, 
correspond to models that are less predictively accurate than 
deep learning models, are more reliant on input data, and 
improving model performance is a more challenging task. 
among the existing deep learning techniques for predicting 
drug synergy. DeepSynergy predicts drug combination 
scores by simply combining drug and cell line features in a 
multi-layer fully connected network[9]. DeepDDS uses the 
smiles information of the drug to learn the drug features, but 
the final training to get the drug features and cell line features 
is still through a simple feed-forward neural network to get 
the drug action score[10]. Transynergy also uses a transformer 
to predict drug combination effects, while adding separate 
proteomic information as input[11]. but Transynergy uses 
multiple transformer modules, resulting in a more 
computationally intensive model and the risk of overfitting, 
leading to poor model performance on independent test sets. 

In this paper, we propose a model to predict drug 
combination synergies based on the TRANSFORMER. In 
contrast to other deep learning models, our model takes the 
drug and cancer cell line features and learns the correlation 
between the drug combination and the cell line through the 
attention mechanism in the TRANSFORMER before 
combining these features to predict the drug action score. Our 
model outperforms DTSyn on different test sets and is 
simpler and faster to compute than DTSyn, which makes use 
of multiple attention modules. 

II. MATERIALS AND METHODS 

A. Data 

We use the smiles of the drugs as input to the model. The 
smiles of the drugs are obtained from DrugBank. The drug's 
smiles are converted into an isomorphic map using RDKit[12], 
where the atoms act as nodes and the chemical bonds as edges. 
The whole isomorphic map is then fed into the model. 

Gene expression in cancer cell lines from TCGA. The 
TCGA includes multi-omics data from 33 different patients 
with different cancer types, mainly including gene 
expression, mutation, DNA methylation, and copy number 
change data. 

Drug combination sensitivity data is obtained from the 
Large Scale Cancer Screening Dataset, a biochemical 
approach to assess whether a drug combination has an effect 
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on a cell line. The Complexation Tool's 4 to 4 dose-response 
matrix was used to calculate a specific drug combination 
action score, with an action score greater than 4 denoting a 
positive synergy between the two drugs and less than 4 
denoting no positive synergy. More than 20,000 clock drug 
combinations' final action scores on 39 cell lines were 
obtained and divided into three sets: a training set, a test set, 
and a validation set in the ratio 8:1:1. 

B. Models 

Fig.1 illustrates the main framework of our model, taking 
an end-to-end learning approach. Molecular maps of drugs 
and gene expression of cell lines are used as input. As the 
molecular map of the drug is not directly input as features 
into the subsequent model, the features of the drug are 
extracted using a graph attention network(GAT). Cell lineage 
characteristics are mapped by MLP to the same feature 
dimension as the drug feature dimension. The drug features 
and cell line features after processing are encoded as the same 
class of features through transforms to learn the mechanism 
of attention between the drug and the cell line. Finally, drug 
characteristics were combined with cell line characteristics to 
predict drug synergy.  

 

 
Fig.1. Pipeline of Model. 

 

C. Drug characterisation based on GAT 

We used RDKit to construct the graph structure of the 
drug, with the nodes of the graph being atoms and the edges 
of the graph being chemical bonds. This results in a graph 
G(V,E) corresponding to each drug, where V is a combination 
of nodes, here representing the set of atoms and atomic 
features, and E represents the connectivity of nodes in 
G(V,E), represented by the binary group (u, v). The initial 
features of the nodes in each graph are obtained through 
DeepChem. 

Drug features are learned using graph attention networks, 
which aggregate node and neighbor node information using a 
multi-headed self-attentive mechanism. After learning, the 
node features will contain local structural information, and 
eventually the set of node features V will contain the drug's 

molecular structure information. The calculation process is as 

follows: 

 ℎ𝑖′ = ||𝑘=1𝐾 (𝑎𝑖𝑖𝑘 𝑊ℎ𝑖 + ∑ 𝑎𝑖𝑗𝑘 𝑊ℎ𝑗𝑗∈𝑁(𝑗) ). 

 
The || denotes the multi-headed attention mechanism, K is the 
number of attetion heads, W is the optimizable parameter 
matrix, N represents the number of first-order neighbour 
nodes, and h is the node feature vector. The attention factor 𝑎𝑖𝑗  is calculated as follows: 

 𝑎𝑖𝑗 = 𝑒𝑥𝑝(𝑅𝑒𝐿𝑢(𝐶𝑇[𝑊ℎ𝑖||𝑊ℎ𝑗]))∑ 𝑒𝑥𝑝(𝑅𝑒𝐿𝑢(𝐶𝑇[𝑊ℎ𝑖||𝑊ℎ𝑚]))𝑚∈𝑁(𝑖) . 
 

where ReLu is the non-linear activation function and C is the 
learnable weight vector. 

D. MLP-based cell line 

The cell line representations were dimensionally mapped 
by an MLP to correspond to the drug representation's 
dimensionality, and a residual network was added to avoid 
over-fitting. Each cancer cell line has its own genetic 
signature. We extracted single-cell sequencing data from 39 
cancer cells in the TCGA database and used it as a 
characterisation of cancer cell lines after noise reduction. 

E. Drug and cell line combination characteristics based on 

transformers 

A deep learning model called the transformer makes use of 
attentional processes[14]. In order to acquire a feature vector 
after a multi-layer self-attentive network, we primarily use 
the encoder section of the transformer to input two drug and 
cell lineage vectors as a sequence into the encoder in the 
transformer. The attentional mechanism is calculated as 
follows: 

First calculate the similarity coefficient between Q and K, 
denoted by f: 

 𝑓(𝑄, 𝐾𝑖), 𝑖 = 1,2, … , 𝑚, 
 
where m denotes the number of vectors in K, Normalize the 
similarity in Q and K: 
 𝛼𝑖 = 𝑒𝑓(𝑄,𝐾𝑖)∑ 𝑓(𝑄,𝐾𝑖)𝑚𝑗=1 , 𝑖 = 1,2, … , 𝑚, 

 
The vector Z after attention is obtained by weighting and 
summing all the values in V with respect to the computed 𝛼𝑖. 
 𝑍 =  ∑ 𝛼𝑖𝑉𝑖𝑚𝑖=1 . 

 
The transformer has six layers altogether, and the attention 
network and residual connections work together to prevent 
overfitting. 

III. RESULT 

The hyperparameters in the model, which for our model 
are primarily from the MLP, GAT, and Transformer, affect 
the model's actual outcome as well. Different 
hyperparameters can greatly influence the effect of the 
model. The main hyperparameter settings in the model are 
shown in Table 1. 
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According to the actual experimental tests, the model 
works best when the number of layers in the GAT is two, 
with the hidden layers having dimensions of 512 and 256 
respectively, and the final GAT output having a dimension of 
128. There are eight headings in the GAT.The output layer 
has the same dimensions as the GAT output layer, and the 
cell lines have three hidden layers of 1024, 512, and 256 
dimensions, respectively. The Transformer's orphaned layer 
is 128 square inches in size, and there are 8 heads. 

 
Table I. Hyperparameter of model 

         Hyperparameter                              Values 

GAT Hidden units 
MLP Hidden units 

Attention Head 

[512,256] 
[1024,512,256] 

8 

 
We contrast the models' performance with some of the 

most recent models, namely the more sophisticated deep 
learning models and certain machine learning models, such 
as DeepDDS, DTsyn, DeepSynergy, etc., in order to assess 
how well the models performed. Additionally, we 
incorporate machine learning models like SVM and Random 
Forest. 

We chose the model that performed best on the validation 
set to validate its performance on the test set using five-fold 
cross-validation, which increased the accuracy of the results 
the model produced. 

The comparison between our model and other models for 
the same data set is shown in the table below. 

 
Table II. Performance of our model compared to other 

methods at 5-fold cross-validation 

Performance 
Metric 

ROC AUC PR AUC ACC 

Our model 0.85±0.01 0.85±0.01 0.83±0.01 

DeepDDS 0.82±0.01 0.81±0.02 0.80±0.02 

DTsyn 0.83±0.02 0.82±0.01 0.80±0.01 

DeepSynergy 0.81±0.01 0.80±0.02 0.78±0.02 

XGBoost 0.70±0.01 0.72±0.03 0.75±0.01 

SVM 0.74±0.02 0.72±0.01 0.77±0.02 

Random 
Forest 

0.76±0.01 0.77±0.01 0.72±0.03 

 
From the above table, it can be inferred that our model 

performs better on five-fold cross-validation than both the 
most recent deep learning models based on the graph 
attention mechanism and the conventional machine learning 
models. 

The aforementioned study demonstrates that our suggested 
model, which requires less computing than existing 
sophisticated models, can accurately predict the impact of 
medication combinations on cancer cell lines. 

IV. CONCLUSION 

In this article, we present a fresh technique for estimating 
how particular cell lines will respond to various drug 
combinations. The molecular structure of the drug is used as 
an isomorphic map in the model to obtain the drug's 
characteristics, and the drug's characteristics obtained 

through GAT training are capable of accurately representing 
the various te of various drugs. Finally, we used a transformer 
module to calculate the attentional mechanism of the drug 
and the cell line, and further calculate the killing effect of the 
combination of the two drugs on the cell line. 

In conclusion, our model is superior to other models in 
terms of prediction accuracy on five-fold cross-validation. It 
is important to note that although though the comparisons 
were conducted with other models, they were done on a 
single dataset, and the model has to be further validated on 
additional, independent datasets.  
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