
 International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-09, Issue-11, November 2022

 15 www.ijerm.com


Abstract—Building deeper and larger convolutional neural

network (CNN) is a primary trend for a wide range of

applications such as image recognition, nature language

processing. However, the most accurate CNNs usually have

hundreds of layers and thousands of channels, thus requiring

large computation and power consumption. The deployment of

deep CNN in power-constrained and performance-limited

scenarios remains challenging due to substantial requirements

for computing resources and energy needed. In this paper, we

propose a novel approach designed efficient CNN using FFT.

The implementationand optimization on low-power zynq

platform has been presented. Our empirical results show our

method reduces computational time by a factor 2 times.

Index Terms—Overlap-and-Add, Convolutional Neural

Network; Mobile Devices; FFT.

I. INTRODUCTION

In recent years, Convolutional Neural Network (CNN) has

been demonstrated as an effective method for various

applications including image[9], video classification[10],

object tracking[18]. CNN as a variant of the standard Deep

Neural Network (DNN), is enable learning data-driven,

highly representative, hierarchical image features from

sufficient training data. It offers significant improvements in

performance over deep neural network[13]. Deep CNN

usually includes convolutional layer, ReLU layer, pooling

layer and fully connected (FC) layer. The convolutional layers

which are high computational complexity serve as a feature

extractor to detect the specific features or patterns from the

two-dimensional input data.

The most accurate CNNs usually have hundreds of layers

and thousands of channels, thus requiring millions of

parameters and billions of operations to process real

applications. For example, AlexNet[9] which is a well-known

CNN architecture has millions of parameters and billions of

operations through the 5-layer convolution of the backward

and forward propagation. It is worth noting that mobile

platforms often have limited performance and power

restrictions. It is a challenging to apply accurate CNN on

mobile platforms which based on modern embedded SoC

such as FPGAs, DSPs, GPUs([2], [3], [7]). Due to power and

performance constraints, these computationally intensive

networks are difficult to implement in mobile platforms such

as smart cameras, drone-based image processing, medical

patient monitoring automotive navigational intelligence,

Manuscript received November 27, 2022.

Weizhi Cui, School of Computer Science and Technology, Tiangong

University, Tianjin, China

among many others.

Fast Fourier Transform (FFT) is a well-known approach,

that reduces the computational complexity of 2D convolution

from 2 2()N MO to 2

2()N log MO , where the size of input

image is N N and the size of filter is M M . This method

takes the FFT of the filter and input feature map, and then

performs the multiplication in the frequency domain. The

inverse FFT is applied to the resulting product to recover the

output feature map in the spatial domain.

In this paper, we propose to use the Fast Fourier Transform

(FFT) and Overlap-and-Add (OaA) to reduce the

computational requirements of the convolutional layer. We

use The Fastest Fourier Transform in the West (FFTW) to

compute the discrete Fourier transform. The method

implements on the Zynq platform which is an ARM-based and

FPGA-based platform. The rest of the paper is organized as

follows: Section 2 describes the OaA technique and our

convolution implementation. Section 3 shows the related

work. The section 4 is main method we proposed in this

paper. Section 5 illustrates the experimental results. The

paper ends with a conclusion in Section 6.

II. BACKGROUND

Throughout this paper, we use the following notations:

1) Input feature maps of size
1 2N N .

2) The kernels size is
1 2M M .

3) The FFT block size is
1 2L L .

4) Output feature maps of size
1 2N N .

Convolutions are used widely in computer vision as a

method of feature extraction, and when used in CNN, it

generates feature maps from input images. For a 2D input data

x , the output feature map y is generated by convolving

x with filters f such that 2(,)y CONV x f . Using a direct

implementation of convolution, the complexity of convolving

a input image with size
1 2N N and filter size

1 2L L is

1 2 1 2()N N L LO .

The 2D convolution can be computed in the frequency

domain as a Hadamard product:

2(,) 2(2().* 2())y CONV x f IFFT FFT x FFT f  (1)

The computational bottleneck is the Fourier transform

between the space and the frequency domain.The complexity

of 2D convolution by Hadamard product in the frequency

domain is
1 2 2 1 2(log)N N N NO .

Overlap and Add method (OaA) is an efficient way to

Extremely Efficient Convolutional Neural Network

for Mobile Devices using FFT

Weizhi Cui

http://www.ijerm.com/

Extremely Efficient Convolutional Neural Network for Mobile Devices using FFT

 16 www.ijerm.com

further reduce the complexity of 2D convolution. In OaA, the

input is broken into
1 2 1 2() / ()N N L L (rounded up) blocks. A

convolution between each block(the size is
1 2L L) and the

kernel is computed. The results are overlapped and added to

obtain the complete output feature map. Each convolution in

OaA can be efficiently computed in the frequency domain,

where the bottleneck is the complexity of each 2-D fast

Fourier transfor
1 2 2 1 2(() ())L L log L LO . The total complexity

for the entire input and kernel is the number of blocks times

the complexity of each block convolution, i.e.,

1 2 1 2 1 2 2 1 2

1 2 2 1 2

() / ()* (() ())

(()).

N N L L L L log L L

N N log L L
O

O
 (2)

since
1 1 1N L M  and

2 2 2N L M  , the mini complexity

of OaA method is
1 2 2 1 2(log)N N M MO , when

1 1L M and

2 2L M .

In this paper, FFTconv refers to convolution via a

Hadamard product in the frequency domain without

overlap-and-add, and OaAconv refers to convolution using

overlap-and-save where each smaller convolution is

efficiently computed in the frequency domain.

III. RELATED WORK

Approaches to apply accurate CNNs on mobile platforms

have been studied intensively at many different applications,

and devices. Currently, there are two main approaches to

accelerate CNNs including algorithm and hardware. From

algorithm perspective, the target is to reduce thecomplexity of

convents by quantizing or otherwise approximating the

convolutional layer. In papers [5], [6], the redundant

connections are reduced by pruning while maintaining

performance. Some work ([8], [11], [19]) proposes

quantization to reduce redundancy in calculations to speed up

inference.

From the hardware perspective, specific architecture and

modules are designed to reuse data, enhance "locality" of

data,and accelerate convolution operations. Prior work has

also been demonstrated on various embedded

System-on-Chips (SoC) such as Nvidia DGX-1 and

ARM-based cpu as well as FPGAs([14], [20]).

The weights in convolutional layers of CNN are used for

multiple times in computation, and thus the overall

performance can be significantly degraded by accelerate

convolutional layers. Due to the complexity of the

convolutional layer, some work has addressed the

computation by unrolling the 2D convolution to matrix

multiplication [16] or computing the 2D convolution in the

frequency domain as a Hadamard product [15]. The

computational bottleneck of frequency domain method is the

Fourier transform. The 2D Fourier transform can be

efficiently computed using Fast Fourier Transforms (FFTs)

with complexity 2

2(log)N NO , where the output of

convolution layer is N N .

Several authors proposed to use Fast Fourier Transform

(FFT) based convolution method on GPU to speed up

computation of the CNN. The advantages of FFT method

compared to other convolution methods are rapid

element-wise products and re-usability of transformed

feature/filter maps([12], [15], [17]).

As far as we know, using FFT to reduce the convolutional

layer computation complexity is studied first by Mathieu et al.

[15]. Then, this method is refined by Vasilache et al. [17] and

implemented in the NVIDIA cuDNN library [4]. The Strassen

algorithm for fast matrix multiplication Cong and Xiao [1] is

to reduce the number of convolutions in a computational

layer, thereby reducing its total arithmetic complexity. The

authors also suggested that more techniques from arithmetic

complexity theory might be applicable to computation.

IV. OVERLAP-AND-ADD ALGORITHM

Algorithm 1 is 1-D overlap-and-add method for spacial

convolution. The input of overlap-and-add method is x of

size
xN and h of size M . The input array x is first split

into smaller blocks that are the size of L (L M). Smaller

convolutions are computed between the kernel and the block

inputs. The resulting convolutions are overlapped by L , and

added together to create the same results as a traditional

spacial convolution.

The total complexity for the entire input and kernel is the

number of blocks times the complexity of each block

convolution, i.e., 2

2()N log LO . Since L M , then the total

complexity is 2

2()N log MO when L M .

1-D overlap-and-add method can easily generalize to 2-D

convolution. The inputs of x are
1 2N N , and the kernels of

h are
1 2M M . x can be broken up into smaller blocks of

dimensions
1 2L L resulting in smaller FFTs. Let

1 1 1/P N L

and
2 2 2/P N L . So

1 2

1 1

2(,) (2(,)).
P P

ij

i j

CONV x h CONV x h
 

 (3)

Each convolution 2(,)ijCONV x h can be efficiently

computed in the frequency domain, where:

2(,) 2(2() * 2())ij ijCONV x h IFFT FFT x FFT h  (4)

The complexity of each 2-D fast Fourier transform

1 2 2 1 2()L L log L LO . The total complexity for the entire input

and kernel is the number of blocks times the complexity of

each block convolution, i.e.,
1 2 2 1 2()N N log L LO . Then, the total

complexity will be
1 2 2 1 2()N N log M MO when

1 1M L and

http://www.ijerm.com/

 International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-09, Issue-11, November 2022

 17 www.ijerm.com

2 2M L . Although the overhead of FFT and additional

operations due to zero-padding and stride, the performance

increase of the OA technique can outweigh these overhead

costs.

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

The target hardware for the proposed implementation is

ilinx Zynq-7000 platform. Note that Zynq comprises two

main parts: a Processing System (PS) formed around a

dual-core ARM Cortex-A9 processor, and Programmable

Logic (PL), which is equivalent to that of an FPGA. It also

features integrated memory, a variety of peripherals, and

high-speed communications interfaces.

In this paper, we only use the dual-core ARM Cortex-A9

processor on Xilinx Zynq-7000 platform. To compute the

FFT, ARM-based fftw-library is used. From version 3.3.1 the

fftw-library includes support for the NEON hardware

accelerator SIMD engine featured in the ARM cores.

B. Time vs. number of kernels

In this experiment we compare the required time to

compute one convolutional layer as the number of kernels in

the layer increases. The input data is of size 64 64 , and each

kernel is of size 5 5 . Each number of kernels experiment is

repeated 20 times and the results are averaged. The number of

kernels is varied from 1 to 550 with a discrete step of 25.

Figure 1 shows the speed-up factor of OaAconv compared

to FFTconv the convolutional as the number of kernels varies.

We can see that OoAconv outperforms FFTconv at every

step. With the number of kernels increases, the acceleration

trend tends to be stable, keeps up to 2 times.

Fig.1 Speed-up OaAconv vs FFTconv with input size 64 64 .

In order to further verify the acceleration effect of

Ooaconv, we have done a set of experiments with the input

size of 1024 1024 and 256 256 , each kernel also is of size

5 5 . This produced the results seen in Figure 2 and Figure 3.

From the Figure 2, we can see that this increases the

performance by only 1.15x speed-up factor with the input size

of 256 256 .

Fig.2 Speed-up OaAconv vs FFTconv with input size 256 256 .

Figure 3 shows the speed-up over OaAconv vs. FFTconv

with the input data size of 1024 1024 . Compared with the

previous test results to verify whether the different input block

size can lead to large difference on OoAconv algorithm

acceleration effects.

Fig.3 Speed-up OaAconv vs FFTconv with input size 1024 1024 .

As can be seen from the results, for different input block

size, through the accelerated operation OoAconv algorithm

computes on different number and size of small pieces,

resulting in differences in computing time, and with the

number of kernels increases, the acceleration effect will

gradually stabilize.

C. Time vs. kernel size

In this experiment, we vary the size of the kernel while

keeping the input size constant. The number of kernels used is

also held constant at 125.

The kernel size vary from 1x1 to 63x63 with a discrete step

of 2x2. The input data of size is 1024 1024 , 256 256 and

64 64 . Each "kernel size" experiment is repeated 20 times

and the results are averaged. Figure 4 to Figure 6 show the

speed-up over OaAconv vs. FFTconv with the input data size

of 1024 1024 , 256 256 and 64 64 .

http://www.ijerm.com/

Extremely Efficient Convolutional Neural Network for Mobile Devices using FFT

 18 www.ijerm.com

Fig.4 input size 64x64, number of kernel 125.

Fig.5 input size 256x256, number of kernel 125.

Fig.6 input size 1024x1024, number of kernel 125.

It can be seen from the above three figures, for different

kernel size and input size, the corresponding acceleration will

be different. And for the input size of 64 64 , OoAconv

algorithm doesn't show a clear acceleration effect, but as for

the overall trend or it has a very good acceleration effect.

VI. DISCUSSION AND FUTURE WORK

In this paper, we exploited Overlap-and-Add method to

reduce the computation complexity of the convolutional

layer.The OaA method is implemented on zynq platform only

using a dual-core ARM Cortex-A9 processor to accelerate

convolutional layers. Experimental results show the speed-up

over OaAconv vs. FFTconv about 2x. In the future we plan to

explore concurrent processing the CPU and

the FPGA on Xilinx Zynq-7000 platform.

REFERENCES

[1] Cong, Jason, and Bingjun Xiao. "Minimizing computation in

convolutional neural networks." International conference on artificial

neural networks. Springer, Cham, 2014.

[2] Conti, Francesco, and Luca Benini. "A ultra-low-energy convolution

engine for fast brain-inspired vision in multicore clusters." 2015

Design, Automation & Test in Europe Conference & Exhibition

(DATE). IEEE, 2015.

[3] Courbariaux, Matthieu, Yoshua Bengio, and Jean-Pierre David.

"Binaryconnect: Training deep neural networks with binary weights

during propagations." Advances in neural information processing

systems 28 (2015).

[4] cuDNN. https://developer.nvidia.com/ cudnn. Accessed: 2015-11-01.

[5] Han, Song, Huizi Mao, and William J. Dally. "Deep compression:

Compressing deep neural networks with pruning, trained quantization

and huffman coding." arXiv preprint arXiv:1510.00149 (2015).

[6] Han, Song, et al. "Learning both weights and connections for efficient

neural network." Advances in neural information processing systems

28 (2015).

[7] Sim, Jaehyeong, et al. "14.6 a 1.42 tops/w deep convolutional neural

network recognition processor for intelligent ioe systems." 2016 IEEE

International Solid-State Circuits Conference (ISSCC). IEEE, 2016.

[8] Jaderberg, Max, Andrea Vedaldi, and Andrew Zisserman. "Speeding

up convolutional neural networks with low rank expansions." arXiv

preprint arXiv:1405.3866 (2014).

[9] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet

classification with deep convolutional neural networks."

Communications of the ACM 60.6 (2017): 84-90.

[10] Karpathy, Andrej, et al. "Large-scale video classification with

convolutional neural networks." Proceedings of the IEEE conference

on Computer Vision and Pattern Recognition. 2014.

[11] Lebedev, Vadim, et al. "Speeding-up convolutional neural networks

using fine-tuned cp-decomposition." arXiv preprint arXiv:1412.6553

(2014).

[12] Lavin, Andrew, and Scott Gray. "Fast algorithms for convolutional

neural networks." Proceedings of the IEEE conference on computer

vision and pattern recognition. 2016.

[13] LeCun, Yann, Fu Jie Huang, and Leon Bottou. "Learning methods for

generic object recognition with invariance to pose and lighting."

Proceedings of the 2004 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, 2004. CVPR 2004.. Vol. 2.

IEEE, 2004.

[14] Levine, Sergey, et al. "End-to-end training of deep visuomotor

policies." The Journal of Machine Learning Research 17.1 (2016):

1334-1373.

[15] Mathieu, Michael, Mikael Henaff, and Yann LeCun. "Fast training of

convolutional networks through ffts." arXiv preprint arXiv:1312.5851

(2013).

[16] Scherer, Dominik, Hannes Schulz, and Sven Behnke. "Accelerating

large-scale convolutional neural networks with parallel graphics

multiprocessors." International conference on Artificial neural

networks. Springer, Berlin, Heidelberg, 2010.

[17] Vasilache, Nicolas, et al. "Fast convolutional nets with fbfft: A GPU

performance evaluation." arXiv preprint arXiv:1412.7580 (2014).

[18] Wang, Naiyan, and Dit-Yan Yeung. "Learning a deep compact image

representation for visual tracking." Advances in neural information

processing systems 26 (2013).

[19] Wang, Min, Baoyuan Liu, and Hassan Foroosh. "Design of efficient

convolutional layers using single intra-channel convolution,

topological subdivisioning and spatial" bottleneck" structure." arXiv

preprint arXiv:1608.04337 (2016).

[20] Zhang, Chen, et al. "Optimizing FPGA-based accelerator design for

deep convolutional neural networks." Proceedings of the 2015

ACM/SIGDA international symposium on field-programmable gate

arrays. 2015.

http://www.ijerm.com/
https://developer.nvidia.com/

	I. INTRODUCTION
	II. Background
	III. Related Work
	IV. Overlap-and-add Algorithm
	V. Experiments and Results
	A. Experimental Setup
	B. Time vs. number of kernels
	C. Time vs. kernel size

	VI. Discussion and Future Work
	References

