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 
Abstract—Building deeper and larger convolutional neural 

network (CNN) is a primary trend for a wide range of 

applications such as image recognition, nature language 

processing. However, the most accurate CNNs usually have 

hundreds of layers and thousands of channels, thus requiring 

large computation and power consumption. The deployment of 

deep CNN in power-constrained and performance-limited 

scenarios remains challenging due to substantial requirements 

for computing resources and energy needed. In this paper, we 

propose a novel approach designed efficient CNN using FFT. 

The implementationand optimization on low-power zynq 

platform has been presented. Our empirical results show our 

method reduces computational time by a factor 2 times. 

 
Index Terms—Overlap-and-Add, Convolutional Neural 

Network;   Mobile Devices;  FFT. 

 

I. INTRODUCTION 

In recent years, Convolutional Neural Network (CNN) has 

been demonstrated as an effective method for various 

applications including image[9], video classification[10], 

object tracking[18]. CNN as a variant of the standard Deep 

Neural Network (DNN), is enable learning data-driven, 

highly representative, hierarchical image features from 

sufficient training data. It offers significant improvements in 

performance over deep neural network[13]. Deep CNN 

usually includes convolutional layer, ReLU layer, pooling 

layer and fully connected (FC) layer. The convolutional layers 

which are high computational complexity serve as a feature 

extractor to detect the specific features or patterns from the 

two-dimensional input data. 

The most accurate CNNs usually have hundreds of layers 

and thousands of channels, thus requiring millions of 

parameters and billions of operations to process real 

applications. For example, AlexNet[9] which is a well-known 

CNN architecture has millions of parameters and billions of 

operations through the 5-layer convolution of the backward 

and forward propagation. It is worth noting that mobile 

platforms often have limited performance and power 

restrictions. It is a challenging to apply accurate CNN on 

mobile platforms which based on modern embedded SoC 

such as FPGAs, DSPs, GPUs([2], [3], [7]). Due to power and 

performance constraints, these computationally intensive 

networks are difficult to implement in mobile platforms such 

as smart cameras, drone-based image processing, medical 

patient monitoring automotive navigational intelligence, 
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among many others. 

Fast Fourier Transform (FFT) is a well-known approach, 

that reduces the  computational complexity of 2D convolution 

from 2 2( )N MO  to 2

2( )N log MO , where the size of input 

image is N N  and the  size  of filter is M M . This method 

takes the FFT of the filter and input feature map, and then 

performs the multiplication in the frequency domain. The 

inverse FFT is applied to the resulting product to recover the 

output feature map in the spatial domain. 

In this paper, we propose to use the Fast Fourier Transform 

(FFT) and Overlap-and-Add (OaA) to reduce the 

computational requirements of the convolutional layer. We 

use The Fastest Fourier Transform in the West (FFTW) to 

compute the discrete Fourier transform. The method 

implements on the Zynq platform which is an ARM-based and 

FPGA-based platform. The rest of the paper is organized as 

follows: Section 2 describes the OaA technique and our 

convolution implementation. Section 3 shows the related 

work. The section 4 is main method we proposed in this 

paper. Section 5 illustrates the experimental results. The 

paper ends with a conclusion in Section 6. 

II. BACKGROUND 

Throughout this paper, we use the following notations: 

1) Input feature maps of size 
1 2N N . 

2) The kernels size is 
1 2M M . 

3) The FFT block size is 
1 2L L . 

4) Output feature maps of size 
1 2N N . 

Convolutions are used widely in computer vision as a 

method of feature extraction, and when used in CNN, it 

generates feature maps from input images. For a 2D input data 

x , the output feature map y  is generated by convolving 

x with filters f such that 2( , )y CONV x f . Using a direct 

implementation of convolution, the complexity of convolving 

a input image with size 
1 2N N  and filter size 

1 2L L  is  

1 2 1 2( )N N L LO . 

The 2D convolution can be computed in the frequency 

domain as a Hadamard product: 

 

2( , ) 2( 2( ).* 2( ))y CONV x f IFFT FFT x FFT f   (1) 

 

The computational bottleneck is the Fourier transform 

between the space and the frequency domain.The complexity 

of 2D convolution by Hadamard product in the frequency 

domain is 
1 2 2 1 2( log )N N N NO . 

Overlap and Add method (OaA) is an efficient way to 
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further reduce the complexity of 2D convolution. In OaA, the 

input is broken into 
1 2 1 2( ) / ( )N N L L  (rounded up) blocks. A 

convolution between each block(the size is 
1 2L L ) and the 

kernel is computed. The results are overlapped and added to 

obtain the complete output feature map. Each convolution in 

OaA can be efficiently computed in the frequency domain, 

where the bottleneck is the complexity of each 2-D fast 

Fourier transfor 
1 2 2 1 2(( ) ( ))L L log L LO . The total complexity 

for the entire input and kernel is the number of blocks times 

the complexity of each block convolution, i.e., 

 

1 2 1 2 1 2 2 1 2

1 2 2 1 2

( ) / ( )* (( ) ( ))

( ( )).

N N L L L L log L L

N N log L L
O

O
       (2) 

 

since
1 1 1N L M  and 

2 2 2N L M  , the mini complexity 

of OaA method is  
1 2 2 1 2( log )N N M MO , when 

1 1L M  and 

2 2L M . 

In this paper, FFTconv refers to convolution via a 

Hadamard product in the frequency domain without 

overlap-and-add, and OaAconv refers to convolution using 

overlap-and-save where each smaller convolution is 

efficiently computed in the frequency domain. 

III. RELATED WORK 

Approaches to apply accurate CNNs on mobile platforms 

have been studied intensively at many different applications, 

and devices. Currently, there are two main approaches to 

accelerate CNNs including algorithm and hardware. From 

algorithm perspective, the target is to reduce thecomplexity of 

convents by quantizing or otherwise approximating the 

convolutional layer. In papers [5], [6], the redundant 

connections are reduced by pruning while maintaining 

performance. Some work ([8], [11], [19]) proposes 

quantization to reduce redundancy in calculations to speed up 

inference. 

From the hardware perspective, specific architecture and 

modules are designed to reuse data, enhance "locality" of 

data,and accelerate convolution operations. Prior work has 

also been demonstrated on various embedded 

System-on-Chips (SoC) such as Nvidia DGX-1 and 

ARM-based cpu as well as FPGAs([14], [20]). 

The weights in convolutional layers of CNN are used for 

multiple times in computation, and thus the overall 

performance can be significantly degraded by accelerate 

convolutional layers. Due to the complexity of the 

convolutional layer, some work has addressed the 

computation by unrolling the 2D convolution to matrix 

multiplication [16]  or computing the 2D convolution in the 

frequency domain as a Hadamard product [15]. The 

computational bottleneck of frequency domain method is the 

Fourier transform. The 2D Fourier transform can be 

efficiently computed using Fast Fourier Transforms (FFTs) 

with complexity 2

2( log )N NO , where the output of 

convolution layer is N N . 

Several authors proposed to use Fast Fourier Transform 

(FFT) based convolution method on GPU to speed up 

computation of the CNN. The advantages of FFT method 

compared to other convolution methods are rapid 

element-wise products and re-usability of transformed 

feature/filter maps([12], [15], [17]). 

As far as we know, using FFT to reduce the convolutional 

layer computation complexity is studied first by Mathieu et al. 

[15]. Then, this method is refined by Vasilache et al. [17] and 

implemented in the NVIDIA cuDNN library [4]. The Strassen 

algorithm for fast matrix multiplication Cong and Xiao [1] is 

to reduce the number of convolutions in a computational 

layer, thereby reducing its total arithmetic complexity. The 

authors also suggested that more techniques from arithmetic 

complexity theory might be applicable to computation. 

IV. OVERLAP-AND-ADD ALGORITHM 

Algorithm 1 is 1-D overlap-and-add method for spacial 

convolution. The input of overlap-and-add method is x  of 

size 
xN  and h  of size M . The input array x  is first split 

into smaller blocks that are the size of L ( L M ). Smaller 

convolutions are computed between the kernel and the block 

inputs. The resulting convolutions are overlapped by L , and 

added together to create the same results as a traditional 

spacial convolution.  

The total complexity for the entire input and kernel is the 

number of blocks times the complexity of each block 

convolution, i.e., 2

2( )N log LO . Since L M , then the total 

complexity is 2

2( )N log MO when L M . 

1-D overlap-and-add method can easily generalize to 2-D 

convolution. The inputs of x  are 
1 2N N , and the kernels of 

h  are 
1 2M M . x can be broken up into smaller blocks of 

dimensions
1 2L L resulting in smaller FFTs. Let 

1 1 1/P N L  

and 
2 2 2/P N L .  So 

 

1 2

1 1

2( , ) ( 2( , )).
P P

ij

i j

CONV x h CONV x h
 

       (3) 

 

 
Each convolution 2( , )ijCONV x h  can be efficiently 

computed in the frequency domain, where: 

 

2( , ) 2( 2( ) * 2( ))ij ijCONV x h IFFT FFT x FFT h     (4) 

 

The complexity of each 2-D fast Fourier transform 

1 2 2 1 2( )L L log L LO . The total complexity for the entire input 

and kernel is the number of blocks times the complexity of 

each block convolution, i.e., 
1 2 2 1 2( )N N log L LO . Then, the total 

complexity will be 
1 2 2 1 2( )N N log M MO when 

1 1M L and 
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2 2M L . Although the overhead of FFT and additional 

operations due to zero-padding and stride, the performance 

increase of the OA technique can outweigh these overhead 

costs. 

 

V. EXPERIMENTS AND RESULTS 

A. Experimental Setup 

The target hardware for the proposed implementation is 

ilinx Zynq-7000 platform. Note that Zynq comprises two 

main parts: a Processing System (PS) formed around a 

dual-core ARM Cortex-A9 processor, and Programmable 

Logic (PL), which is equivalent to that of an FPGA. It also 

features integrated memory, a variety of peripherals, and 

high-speed communications interfaces. 

In this paper, we only use the dual-core ARM Cortex-A9 

processor on Xilinx Zynq-7000 platform. To compute the 

FFT, ARM-based fftw-library is used. From version 3.3.1 the 

fftw-library includes support for the NEON hardware 

accelerator SIMD engine featured in the ARM cores. 

B. Time vs. number of kernels 

In this experiment we compare the required time to 

compute one convolutional layer as the number of kernels in 

the layer increases. The input data is of size 64 64 , and each 

kernel is of size 5 5 . Each number of kernels experiment is 

repeated 20 times and the results are averaged. The number of 

kernels is varied from 1 to 550 with a discrete step of 25. 

Figure 1 shows the speed-up factor of OaAconv compared 

to FFTconv the convolutional as the number of kernels varies.  

We can see that OoAconv outperforms FFTconv at every 

step. With the number of kernels increases, the acceleration 

trend tends to be stable, keeps up to 2 times. 

 

 
Fig.1 Speed-up OaAconv vs FFTconv with input size 64 64 . 

 

In order to further verify the acceleration effect of 

Ooaconv, we have done a set of experiments with the input 

size of 1024 1024  and 256 256 ,  each kernel also is of size 

5 5 . This produced the results seen in Figure 2 and Figure 3. 

From the Figure 2, we can see that this increases the 

performance by only 1.15x speed-up factor with the input size 

of 256 256 . 

 

 
Fig.2 Speed-up OaAconv vs FFTconv with input size 256 256 . 

 

Figure 3 shows the speed-up over OaAconv vs. FFTconv 

with the input data size of 1024 1024 . Compared with the 

previous test results to verify whether the different input block 

size can lead to large difference on OoAconv algorithm 

acceleration effects. 

 

 
Fig.3 Speed-up OaAconv vs FFTconv with input size 1024 1024 . 

 

As can be seen from the results, for different input block 

size, through the accelerated operation OoAconv algorithm 

computes on different number and size of small pieces, 

resulting in differences in computing time, and with the 

number of kernels increases, the acceleration effect will 

gradually stabilize. 

C. Time vs. kernel size 

In this experiment, we vary the size of the kernel while 

keeping the input size constant. The number of kernels used is 

also held constant at 125. 

The kernel size vary from 1x1 to 63x63 with a discrete step 

of 2x2. The input data of size is 1024 1024 , 256 256  and 

64 64 . Each "kernel size" experiment is repeated 20 times 

and the results are averaged. Figure 4 to Figure 6 show the 

speed-up over OaAconv vs. FFTconv with the input data size 

of 1024 1024 , 256 256  and 64 64 . 
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Fig.4 input size 64x64, number of kernel 125. 

 
Fig.5 input size 256x256, number of kernel 125. 

 

 
Fig.6 input size 1024x1024, number of kernel 125. 

 

It can be seen from the above three figures, for different 

kernel size and input size, the corresponding acceleration will 

be different. And for the input size of  64 64 , OoAconv 

algorithm doesn't show a clear acceleration effect, but as for 

the overall trend or it has a very good acceleration effect. 

VI. DISCUSSION AND FUTURE WORK 

In this paper, we exploited Overlap-and-Add method to 

reduce the computation complexity of the convolutional 

layer.The OaA method is  implemented on zynq platform only 

using a dual-core ARM Cortex-A9 processor to accelerate 

convolutional layers. Experimental results show the speed-up 

over OaAconv vs. FFTconv about 2x. In the future we plan to 

explore concurrent processing the CPU and 

the FPGA on Xilinx Zynq-7000 platform. 
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